

ВІСНИК

КАМ'ЯНЕЦЬ-ПОДІЛЬСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ ІМЕНІ ІВАНА ОГІЄНКА

ФІЗИЧНЕ ВИХОВАННЯ, СПОРТ І ЗДОРОВ'Я ЛЮДИНИ

ЗБІРНИК НАУКОВИХ ПРАЦЬ

ВИПУСК 30, № 3 (2025)

Головний редактор:

Єдинак Г. А., д-р наук з фізичного виховання і спорту, професор, Кам'янець-Подільський національний університет імені Івана Огієнка, Україна

https://orcid.org/0000-0002-6865-0099

https://publons.com/researcher/G-2352-2019/

https://www.scopus.com/authid/detail.uri?authorld=57194696615

Редакційна колегія:

Алєксєєв О. О., д-р педагогічних наук, професор, Кам'янець-Подільський національний університет імені Івана Огієнка, Україна https://orcid.org/0000-0002-6950-4413

https://www.scopus.com/authid/detail.uri?authorld=57210840690

Блавт О. 3., д-р педагогічних наук, професор, Національний університет «Львівська політехніка», Україна, http://orcid.org/0000-0001-5526-9339 https://www.scopus.com/authid/detail.uri?authorld=35867792400

Галаманжук Л. Л., д-р педагогічних наук, професор, Кам'янець-Подільський національний університет імені Івана Огієнка, Україна https://orcid.org/0000-0001-9359-7261

https://www.scopus.com/authid/detail.uri?authorId=57194713001

Носко Ю. М., д-р педагогічних наук, професор, Національний університет «Чернігівський колегіум» імені Т. Г. Шевченка, Чернігів, Україна https://orcid.org/0000-0003-1077-8206

https://www.scopus.com/authid/detail.uri?authorld=56880366900

Попович А. С., д-р педагогічних наук, професор, Кам'янець-Подільський національний університет імені Івана Огієнка, Україна https://orcid.org/0000-0002-3428-9717

https://www.webofscience.com/wos/author/record/GSI-9453-2022

Саєнко В. Г., д-р філософії з фізичного виховання, д-р наук з організації та управління, Академія прикладних наук — Академія управління та адміністрування в Ополі, Польща, https://orcid.org/0000-0003-2736-0017 https://www.scopus.com/authid/detail.uri?authorld=57401960900

Ostrowski A., Habilitated doctor of Physical Culture Sciences, Didactic professor, Academy of Phisical Education in Krakow, University of Ecomomy in Bydgoszcz, Poland, http://orcid.org/0000-0003-3075-093X

Pascoa, M. A., PhD Researcher Collaborator, Researcher Collaborator at Doctor in Child and Adolescent Health Sciences – Physicla Education and Sports, Faculty of Medical Sciences of the State University of Campinas - CIPED UNICAMP, Brazil https://orcid.org/0000-0003-4685-6990 https://www.scopus.com/authid/detail.uri?authorId=55963960000

Zelinskyy G., Doctor rerum naturalium, Principal Investigator, Universitat Duisburg-Essen, Universitatsmedizin Essen, Institut for Virologie, Germany https://orcid.org/0000-0001-6338-2382 Відповідальний секретар:

Клюс О. А., канд. наук з фізичного виховання і спорту, доцент, Кам'янець-Подільський національний університет імені Івана Огієнка, Україна https://orcid.org/0000-0003-4919-5323

https://www.scopus.com/authid/detail.uri?authorId=57195972397

ина колегія:

Дутчак М. В., д-р наук з фізичного виховання і спорту, професор, Національний університет фізичного виховання і спорту України https://orcid.org/0000-0001-6823-272X

https://www.scopus.com/authid/detail.uri?authorId=57194703137

Нестерчук Н. Є., д-р наук з фізичного виховання і спорту, професор, Національний університет водного транспорту та природокористування, Україна

https://orcid.org/0000-0003-2199-3403

https://www.scopus.com/authid/detail.uri?authorld=57199514456

Романчук С. В., д-р наук з фізичного виховання і спорту, професор, Національна академія сухопутних військ імені гетьмана Петра Сагайдачного. Україна

https://orcid.org/0000-0002-2246-6587

https://www.scopus.com/authid/detail.uri?authorId=57209355838

Стасюк І. І., канд. наук з фізичного виховання і спорту, доцент, Кам'янець-Подільський національний університет імені Івана Огієнка, Україна https://orcid.org/0000-0002-4504-5902

https://www.scopus.com/authid/detail.uri?authorld=57195515685

Poderys J., Habilitated doctor of Physical Culture Sciences, Professor, Institute of Science & Innovations, Lithuanian Sports University, Lithuania http://orcid.org/0000-0003-4941-6421

https://www.scopus.com/authid/detail.uri?authorld=22136159100

Skaliy A., PhD of Physical Education and Sports Sciences, Associate Professor, Institute of Sport and Physical Culture at the University of Economy in Bydgoszcz, Poland

https://orcid.org/0000-0001-7480-451X

https://www.scopus.com/authid/detail.uri?authorId=55144007000

Shi Lei, Doctoral degree, Professor (Level 4), Director of the Sports Monitoring Big Data Center Director of the Sports Training Teaching and Research Section, College of Competitive Sports, Shandong Sport University, China https://orcid.org/0009-0008-7286-3397

В 53 Вісник Кам'янець-Подільського національного університету імені Івана Огієнка. Фізичне виховання, спорт і здоров'я людини / [редкол.: Єдинак Г. А. (відп. ред.) та ін]. Кам'янець-Подільський: Видавець Панькова А. С. 2025. Випуск 30(3). 52 с.

ISSN 2309-8082 ISSN 2786-4790 (Online)

У віснику висвітлюються результати наукових досліджень з актуальних проблем, що пов'язані з педагогічними аспектами фізичного виховання різних груп населення, валеології, ерготерапії, підготовки спортсменів та менеджменту у фізичній культурі.

Матеріали друкуються в авторській редакції. Рекомендовано науковим, науково-педагогічним працівникам, вчителям фізичної культури, основ здоров'я, тренерам з видів спорту, фахівцям з фізичної терапії, докторантам та аспірантам.

УДК 796:613

Адреса редакції:

вул. Огієнка, 61 м. Кам'янець-Подільський, Україна http://visnyk-sport.kpnu.edu.ua/ E-mail: alenakamp@gmail.com DOI:10.32626/2309-8082.2025-30(3) Збірник включено до Переліку наукових фахових видань України категорії Б; галузь «Педагогічні науки» (спеціальності 011 і 014 (середня освіта (фізична культура))) та галузь «Фізичне культура і спорт» (спеціальність 017). — Наказ Міністерства освіти і науки України № 1643 від 28.12.2019 р.

Вісник включено до науково-метричних баз:

НБУ ім. В. І. Вернадського, CrossRef, Google Scholar, Index Copernicus, CEJSH, OAJI

Свідоцтво про державну реєстрацію друкованого засобу масової інформації: **R30-02677 від 18.01.2024**

Друкується за ухвалою Вченої ради Кам'янець-Подільського національного університету імені Івана Огієнка (протокол № 12 від 25.09.2025)

Виходить 4 рази на рік. Заснований у 2013 році. Видається за сприяння Богуцького В. І.

© К-ПНУ імені Івана Огієнка

3 MICT

Kvach O.	Motivational factors for engaging children age 3–6 in rhythmic gymnastics in the conditions of the educational process	129
Samolyuk O.	The effect of regular jogging on the health and physical fitness of overweight women of various ages	137
Shi Lei Kurivskyi Ya. Matsiyevych T.	Features of postural stability in physically healthy children with special educational needs according to the results of certain instrumental fixation	144
Клюс О. Погорецька О. Скавронський О.	Виявлення стресостійкості та інтересу студенток до занять плаванням на заняттях фізичної культури	156
Цимбалюк Ж. Палевич С. Кондратюк В. Кривенцова I. Клименченко В.	Формувальне оцінювання як інструмент підвищення мотивації до занять фізичною культурою	166

BULLETIN

OF KAMIANETS-PODILSKYI IVAN OHIIENKO NATIONAL UNIVERSITY

PHYSICAL EDUCATION, SPORTS AND HUMAN HEALTH

COLLECTION OF SCIENTIFIC WORKS

ISSUE 30, No. 3 (2025)

Editor-in-Chief:

ledynak G., Full professor Doctor of Physical Education and Sports Sciences, Kamianets-Podilskyi Ivan Ohiienko National University, Ukraine

https://orcid.org/0000-0002-6865-0099

https://publons.com/researcher/G-2352-2019/

https://www.scopus.com/authid/detail.uri?authorId=57194696615

Alieksieiev O., Doctor of Pedagogical Sciences, Professor, Kamianets-Podilskyi Ivan Ohiienko National University, Ukraine

https://orcid.org/0000-0002-6950-4413 https://www.scopus.com/authid/detail.uri?authorld=57210840690

Blavt O., Full professor Doctor of Pedagogical Sciences, Lviv Polytechnic National University, Ukraine, http://orcid.org/0000-0001-5526-9339

https://www.scopus.com/authid/detail.uri?authorld=35867792400

Galamanzhuk L., Full professor Doctor of Pedagogical Sciences, Kamianets-Podilskyi Ivan Ohiienko National University, Ukraine

https://orcid.org/0000-0001-9359-7261

https://www.scopus.com/authid/detail.uri?authorld=57194713001

Nosko Yu., Doctor of Pedagogical Sciences, Professor, T. H. Shevchenko National University «Chernihiv Colehium», Ukraine,

https://orcid.org/0000-0003-1077-8206

https://www.scopus.com/authid/detail.uri?authorld=56880366900

Ostrowski A., Habilitated doctor of Physical Culture Sciences, Didactic professor, Academy of Phisical Education in Krakow, University of Ecomomy in Bydgoszcz, Poland, http://orcid.org/0000-0003-3075-093X

Pascoa, M. A., PhD Researcher Collaborator, Researcher Collaborator at Doctor in Child and Adolescent Health Sciences - Physicla Education and Sports, Faculty of Medical Sciences of the State University of Campinas - CIPED UNICAMP, Brazil https://orcid.org/0000-0003-4685-6990

https://www.scopus.com/authid/detail.uri?authorld=55963960000

Popovich A., Full professor Doctor of Pedagogical Sciences, Kamianets-Podilskyi Ivan Ohiienko National University, Ukraine

https://orcid.org/0000-0002-3428-9717

https://www.webofscience.com/wos/author/record/GSI-9453-2022

Saienko V., PhD in physical education, DSc in organization and management, Academy of Applied Sciences – Academy of Management and Administration in Opole, Poland https://orcid.org/0000-0003-2736-0017

https://www.scopus.com/authid/detail.uri?authorld=57401960900

Zelinskyy G., Doctor rerum naturalium, Principal Investigator, Universitat Duisburg-Essen, Universitatsmedizin Essen, Institut for Virologie, Germany https://orcid.org/0000-0001-6338-2382

Assistant Editor:

Klyus O., PhD of Physical Education and Sports Sciences, Kamianets-Podilskyi Ivan Ohiienko National University, Ukraine

https://orcid.org/0000-0003-4919-5323

https://www.scopus.com/authid/detail.uri?authorld=57195972397

Editorial Board:

Dutchak M., Full professor Doctor of Physical Education and Sports Sciences, National University of Physical Education and Sports of Ukraine https://orcid.org/0000-0001-6823-272X

https://www.scopus.com/authid/detail.uri?authorId=57194703137

Nesterchuk N., Full professor Doctor of Physical Education and Sports Sciences, National University Of Water And Environmental Engineering, Ukraine

https://orcid.org/0000-0003-2199-3403

https://www.scopus.com/authid/detail.uri?authorld=57199514456

Poderys J., Habilitated doctor of Physical Culture Sciences, Professor, Institute of Science & Innovations, Lithuanian Sports University, Lithuania http://orcid.org/0000-0003-4941-6421

https://www.scopus.com/authid/detail.uri?authorld=22136159100

Romanchuk S., Full professor Doctor of Physical Education and Sports Sciences. National Army Academy Hetman Petro Sahaidachny, Ukraine https://orcid.org/0000-0002-2246-6587

https://www.scopus.com/authid/detail.uri?authorId=57209355838

Shi Lei, Doctoral degree, Professor (Level 4), Director of the Sports Monitoring Big Data Center Director of the Sports Training Teaching and Research Section, College of Competitive Sports, Shandong Sport University, China

https://orcid.org/0009-0008-7286-3397

Skaliy A., PhD of Physical Education and Sports Sciences, Associate Professor, Institute of Sport and Physical Culture at the University of Economy in Bydgoszcz, Poland

https://orcid.org/0000-0001-7480-451X

https://www.scopus.com/authid/detail.uri?authorId=55144007000

Stasiuk I., PhD of Physical Education and Sports Sciences, Associate Professor, Dean of Faculty of Physical Education, Kamianets-Podilskyi Ivan Ohijenko National University, Ukraine, https://orcid.org/0000-0002-4504-5902

https://www.scopus.com/authid/detail.uri?authorId=57195515685

B 53 Bulletin of the Kamianets-Podilskyi Ivan Ohiienko National University. Physical education, Sport and Human Health [ed.: G. ledynak (Editor-in-Chief) and others]. Kamianets-Podilskyi: Publisher Alla Pankova. 2025. Issue 30(3). 52 p.

ISSN 2309-8082 ISSN 2786-4790 (Online)

The bulletin covers the results of the scientific investigations of the current problems connected with educational aspects of the physical training of different social classes, valeology, ergotherapy, preparing sportsmen and management in physical education.

The material is published in author's edition. This material is

recommended to scientific, scientific-educational assistants, teachers of PE, health basics, sports coaches, physical theraphy specialists, doctoral candidates and Ph.D. students.

UDC 796:613

Editorial Address:

Ivan Ohiienko, 61 st. Kamianets-Podilskyi, Ukraine

http://visnyk-sport.kpnu.edu.ua/ E-mail: alenakamp@gmail.com DOI:10.32626/2309-8082.2025-30(3)

Indexing:

Vernadsky National Library of Ukraine CrossRef Google Scholar Index Copernicus CEJSH OAJI

Certificate to registration: R30-02677 of 18.01.2024

The publication is approved by the decision of the Scientific Board of Kamianets-Podilskyi Ivan Ohiienko National University (protocol № 12 of 25.09.2025)

Four issues per year.

Established in 2013.

Published with the assistance of Bogutsky V.

© Kamianets-Podilskyi Ivan Ohiienko National University

CONTENTS

Kvach O.	Motivational factors for engaging children age 3–6 in rhythmic gymnastics in the conditions of the educational process	129
Samolyuk O.	The effect of regular jogging on the health and physical fitness of overweight women of various ages	137
Shi Lei Kurivskyi Ya. Matsiyevych T.	Features of postural stability in physically healthy children with special educational needs according to the results of certain instrumental fixation	144
Klius O. Pohoretska O. Skavronskyi O.	Assessing Stress Resilience and Motivation of Female Students for Swimming in Physical Education Classes	156
Tsymbalyuk Zh. Palevych S. Kondratyuk V. Kryventsova I. Klymenchenko V.	Formative assessment as a tool for increasing motivation for physical education classes	166

MOTIVATIONAL FACTORS FOR ENGAGING CHILDREN AGE 3-6 IN RHYTHMIC GYMNASTICS IN THE CONDITIONS OF THE EDUCATIONAL PROCESS

Olha Kvach

https://orcid.org/0009-0000-5252-7099

Preschool, Oak Ridge School District, Tennessee, USA «Nika Rhythmic gymnastics LLC», USA

corresponding author - O. Kvach: okvach94@gmail.com

For many preschool-aged children, systematic engagement in rhythmic gymnastics represents one of the earliest forms of organized physical activity, combining health-promoting, educational, and aesthetic goals. Purpose. The aim of the study is to identify motivational factors that contribute to the involvement of children aged 3-6 in rhythmic gymnastics within the educational process. Methods. A combination of general scientific and empirical methods was applied. At the theoretical level, the study employed methods of analysis, synthesis, generalization, and interpretation of scientific literature. The empirical part included a questionnaire survey of parents (n = 48), semi-structured interviews with coaches (n = 3), and pedagogical observation of children's emotional and motivational responses during training in the beginner groups of the Slavutych Municipal Youth Sports School (until January 2022). The quantitative data obtained were processed using descriptive statistics. Results. The findings showed that parents primarily identified external motives for choosing rhythmic gymnastics for their children, such as the combination of physical and aesthetic development, the formation of discipline, and movement culture. At the same time, children were driven by internal motives, including interest in movement, enjoyment of classes, the desire to emulate the coach, or to be part of a group. Children's emotional reactions to training were predominantly positive, as confirmed by both parent responses and observational data. The pedagogical style of the coach, which included individualization, approval, and playful elements, had a significant impact on the sustainability of the child's motivation. Conclusions. The results highlight the importance of early identification of motivational resources when working with preschool children, as well as the need for an appropriate pedagogical approach that considers both the child's needs and family values. An optimal combination of external and internal factors enhances the effectiveness of educational and sports engagement and promotes long-term interest in physical activity.

Keywords: motivation, rhythmic gymnastics, preschool age, physical development, emotional engagement, interaction style, educational process.

Introduction

Preschool age, covering the period from three to six years, was considered a key stage in the formation of personality, the development of basic psychomotor skills, and the initial socialization of the child. During this period, the foundation was laid for further physical, emotional, and cognitive development, and therefore — for involvement in organized forms of motor activity, in particular sports. Research in the field of developmental psychology (in particular the works of L. S. Vygotsky [13], G. O. Vaskivska, S. P. Palamar, S. G. Kondratyuk [19]) testified that it was

Ольга Квач. Мотиваційні чинники залучення дітей 3–6 років до художньої гімнастики в умовах освітнього процесу

doi: 10.32626/2309-8082.2025-30(3).129-136

Анотація. Для багатьох дітей дошкільного віку систематичні заняття художньою гімнастикою є однією з перших форм організованої фізичної активності, яка поєднує оздоровчі, виховні та естетичні цілі. Мета роботи – визначити мотиваційні чинники, які сприяють залученню дітей віком 3-6 років до занять художньою гімнастикою в умовах освітнього процесу. Методи дослідження. У дослідженні застосовано комплекс загальнонаукових та емпіричних методів. На теоретичному рівні використовувались методи аналізу, синтезу, узагальнення та інтерпретації наукових джерел. Емпірична частина включала анкетування батьків (n = 48), напівструктуровані інтерв'ю з тренерами (n = 3), а також педагогічне спостереження за емоційномотиваційними проявами дітей під час тренувань у початкових групах Комлексної дитячо-юнацької спортивної школи (КДЮСШ) Славутицької міської ради (до січня 2022 року). Отримані кількісні дані оброблено за допомогою методів описової статистики. Результати дослідження. Результати показали, що ключовими зовнішніми мотивами вибору художньої гімнастики для дитини батьки називали поєднання фізичного та естетичного розвитку, формування дисципліни та культури рухів. Водночас, у дітей домінували внутрішні мотиви, пов'язані з інтересом до руху, задоволенням від занять, бажанням наслідувати тренера або бути частиною групи. Емоційна реакція дітей на тренування переважно мала позитивне забарвлення, що фіксувалося як у відповідях батьків, так і під час спостережень. Педагогічний стиль тренера, що включав індивідуалізацію, схвалення та ігрові елементи, істотно впливав на стійкість мотивації дитини. Висновки. Отримані результати підкреслюють важливість раннього виявлення мотиваційних ресурсів у роботі з дітьми дошкільного віку та необхідність відповідного педагогічного підходу, що враховує як потреби дитини, так і цінності родини. Оптимальне поєднання зовнішніх та внутрішніх чинників сприяє підвищенню ефективності освітньо-спортивного впливу та формуванню тривалої зацікавленості у фізичній активності.

Ключові слова: мотивація, художня гімнастика, дошкільний вік, фізичний розвиток, емоційна залученість, стиль взаємодії, освітній процес-

precisely at the preschool age that intensive accumulation of experience of self-regulation, development of attention, coordination of movements, and initial motivation took place, which became a prerequisite for the formation of a stable interest in sports activity.

One of the forms of involving preschool children in physical activity in the conditions of the educational process was rhythmic gymnastics – a sport that combined the aesthetic component with comprehensive motor training. Classes in rhythmic gymnastics at an early age contributed to the development of flexibility, balance,

coordination, rhythm, as well as formed skills of discipline and group work. However, the effectiveness of involving children in systematic classes depended on a set of motivational factors – both external (influence of parents, teachers, educational environment) and internal (need for recognition, interest in movement, satisfaction from achievements) [8].

The issue of motivation in preschool age was considered in the works of A. Maslow [9], C. Rogers [15], D. McClelland [10], I. I. Bekh [2]. It was indicated that the formation of a stable interest in physical education at an early age was significantly influenced by a positive emotional atmosphere, an individualized approach of the coach, and the recognition of the child's achievements in the form of approval, rewards, or public emphasis on success.

Modern studies complement these conclusions, emphasizing the influence of both the educational environment and family factors. Thus, the results of Au, W. W., et al. [11] confirmed that physically enriched preschool education programs positively affect children's motor behavior and physical fitness level. K. Kippe [6] demonstrated the significance of educators' motivation, since the active participation of teachers increased the level of children's motor activity. Viñuela, Y., et al. [21] proved the effectiveness of active methods in preschool education, which significantly increased learning and motor motivation. Tapia-Serrano, M. Á., et al. [18] outlined different motivational profiles of physical activity depending on sociodemographic characteristics, which is important to consider when organizing classes. Carcamo-Oyarzun, J., et al. [3] showed the connection between motor competence, motivation, and satisfaction in physical education classes, while Verdonschot, A., et al. [20] developed a tool for assessing the opportunities and motivation of teachers to implement motor activity in the educational environment. Huang, W., et al. [5] emphasized the role of family and preschool contexts in shaping children's physical activity, while Sánchez-Miguel, P. A., et al. [16] and Pracht, D. W., Houghton, V., Fogarty, K., Sagas, M. [12] identified the significant influence of parents' behavior and motivation on children's involvement in sports and on the satisfaction from activities.

Given that motivational factors determined not only the initial interest of the child but also the level of further involvement, adaptation to the training process, and the formation of an attitude toward sport as a valuable component of life, there arose a need for an in-depth study of this aspect precisely in the context of preschool rhythmic gymnastics. In addition, the peculiarities of the motivation of children aged 3–6 differed significantly from the motivational structure of schoolchildren, which required distinguishing the corresponding age specificity when analyzing involvement in sports activities.

Within the framework of this study, the practical experience of working with children of the younger age group in the rhythmic gymnastics department of the Complex Children and Youth Sports School of the Slavutych City Council of Vyshhorod District, Kyiv Region, was analyzed. The focus was placed on identifying the leading motives that stimulated the systematic attendance of classes by children aged 3–6 during the period before the beginning of the full-scale war in Ukraine.

The purpose of the work was to establish the main motivational factors that influenced the involvement of preschool children in rhythmic gymnastics in the conditions of the educational process, as well as to analyze the educational environment in which readiness for participation in the training process was formed.

Material and Methods of Research

The study covered 48 children aged 3 to 6 who attended the rhythmic gymnastics section at the rhythmic gymnastics department of the Complex Children and Youth Sports School of the Slavutych City Council of Vyshhorod District, Kyiv Region. The children belonged to the initial preparatory group, whose training process was carried out until January 2022. According to their health status, all participants of the study were medically admitted to rhythmic gymnastics classes.

The research was carried out at both theoretical and empirical levels. At the theoretical level, the study of scientific sources was conducted through analysis, synthesis, classification, and generalization of information from academic articles, professional manuals, monographs, as well as the results of previous empirical studies. The search was conducted in the databases Google Scholar, ERIC, and ScienceDirect. In total, 10 sources were processed, of which 7 were included in the main analytical base, which made it possible to identify modern approaches to the study of motivation in preschool age, the structure of sports involvement, and the psychological and pedagogical factors of early physical activity.

At the empirical level, the method of pedagogical observation, parent questionnaires, and semi-structured interviews with coaches were used. Pedagogical observation was conducted in the format of non-participant recording during three months of active training. The main attention was paid to the emotional expressions of children during the performance of exercises, the level of initiative, the conformity of behavior to the training conditions, as well as the dynamics of involvement under the influence of external factors.

The structure of the questionnaire included 12 questions that made it possible to determine which factors – the training environment, the coach's communication style, competitive elements, or home support – parents considered decisive in shaping their child's motivation for rhythmic gymnastics classes (Table 1).

Each question was accompanied by suggested answer options with the possibility of choosing one or several variants. Quantitative processing of the responses was carried out by counting the frequency of each option chosen and calculating the percentage ratios.

A supplement to the survey was semi-structured interviews with two coaches who conducted the training of children of the specified age category. Their assessments concerned the personal reactions of the children, factors of involvement, typical behavior patterns during classes, as well as the evaluation of the dynamics of interest depending on the structure of the training process.

For the processing of the obtained empirical data, methods of mathematical statistics were used, which made

it possible to establish quantitative relationships between certain groups of factors and the overall level of the child's interest in classes. Frequency counts, calculation of percentage distributions, and construction of generalized distribution tables were applied.

During the implementation of the study, ethical standards were observed in accordance with the provisions of the Declaration of Helsinki of the World Medical Association (WMA, 2013). The parents of the study participants provided written informed consent for the participation of the children in the training process, as well as for the use of the collected information for educational and scientific purposes.

Table 1 - Content of the questionnaire for parents of children aged 3-6 who attended rhythmic gymnastics classes

Nº	Questionnaire Questions
1	Why did you choose rhythmic gymnastics as an activity for your child?
2	Does your child wake up with the desire to go to gymnastics classes?
3	What does your child like the most in the classes (in your opinion)?
4	Have you noticed the impact of the classes on your child's overall activity at home?
5	Does your child talk at home about the coach or about rhythmic gymnastics classes?
6	How does your child respond to praise from the coach?
7	Does the presence of a peer group in the classes motivate your child?
8	Does your child show initiative to repeat the exercises at home?
9	How important for you is the development of flexibility, discipline, and aesthetics?
10	Does your child pay attention to appearance (uniform, hairstyle) before the class?
11	Does your own motivation influence your child's desire to attend training?
12	Which factor, in your opinion, is the main motivator for your child?

Research Results

According to the results of the survey conducted among the parents of children aged 3–6 who attended rhythmic gymnastics classes at the Complex Children and Youth Sports School of the Slavutych City Council, it was possible to identify quantitatively defined motives that determined the initial involvement of children in this sport. In the first part of the questionnaire, the question was asked: «Why did you choose rhythmic gymnastics for your child?», to which respondents could choose one or several answer options.

The most common answer was the statement «rhythmic gymnastics develops grace, plasticity, and aesthetic taste» — it was supported by 62.5 % of respondents (30 out of 48 parents). This option reflected the families' deep orientation toward the harmonious physical and visually aesthetic development of the child, which combines external attractiveness with motor coordination. At the same time, in the open responses (within the semi-structured comments), 18 respondents additionally noted such phrases as «it is a feminine sport», «looks beautiful

in performances», «eaches control of movements and emotions».

The second most common motive was the recommendation of other parents or acquaintances who already had positive experience with this coach or section – 20.8 % (10 people) chose the option «on the advice of friends/acquaintances». This factor reflected social imitation and trust in previously proven practice. A typical comment was the phrase: «a friend recommended it to us, her daughter has been attending for the second year and is very satisfied».

About 12.5 % of parents (6 people) indicated that the choice of rhythmic gymnastics was determined by their own childhood experience or an unfulfilled dream. The answer option «I also wanted to do gymnastics in my childhood» testified to transgenerational projection of expectations, where the sports choice for the child was defined by the adult's inner nostalgia or the desire to realize what had been unavailable in their own childhood. In three cases, it was noted that the respondent's mother had once practiced artistic gymnastics or ballet.

The least significant were instrumental factors, such as *«convenient location of the section»* (4.2 %, that is, only 2 people) or *«lowcost of classes»*—this option was not chosen by any respondent, which indicates the predominance of value-based and aesthetic-developmental motives over pragmatic or logistical considerations.

It is important to emphasize that 38 out of 48 parents (79.2 %) chose only one answer option, which indicated

the presence of clear, focused motivation. Only 10 people (20.8 %) chose two options. In no case were more than two reasons indicated, which also confirms the stability of identifying the motive for involving the child in rhythmic gymnastics. Figure 1 shows the frequency distribution of parents' responses regarding the main reasons for involving children in rhythmic gymnastics, among which aesthetic-developmental motives dominate.

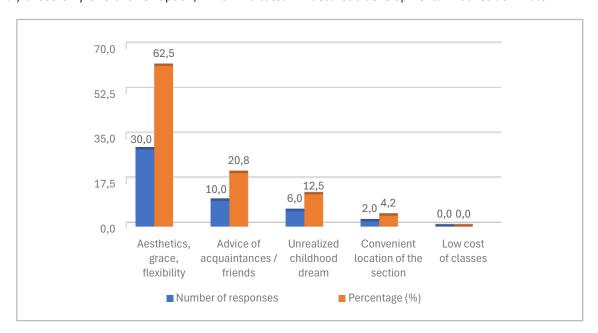


Fig. 1 Distribution of parents' responses to the question about the main reason for choosing rhythmic gymnastics for their child

The data obtained in Fig. 1 indicate the predominance of intrapersonal and cultural-aesthetic motives in the choice of physical activity for preschool children. In the eyes of parents, rhythmic gymnastics was perceived not only as a sport, but also as a form of cultivating taste, self-control, perfection of movements, as well as a way of emotional and social development in a safe environment. This confirms the relevance of the aesthetic-pedagogical approach in shaping motivation for physical activity at early age stages.

The next stage of the study was the examination of children's emotional attitude toward the classes, which was assessed both through parents' responses and by pedagogical observation of children's behavioral reactions during the training process. According to the results of the survey, 81.2 % of respondents (39 people) indicated that their child always goes to training with pleasure, another 14.6 % (7 people) chose the option *«sometimes shows desire»*, and only 4.2 % (2 parents) answered that the child *«reluctantly goes to classes»*. Such results indicate a consistently high level of positive emotional involvement in the training process.

To the question «Does your child talk at home about the coach or about rhythmic gymnastics classes»? 77.1 % of parents (37 people) answered affirmatively, 16.7 % (8 people) indicated that such conversations occur rarely,

and only 6.2 % (3 people) reported the absence of the child's interest in discussing the classes at home. Such verbal reproduction of sports experience indicates the emotional significance of the classes for the child and the desire to reinforce the positive experience through communication with a close adult.

Regarding the question about the child's initiative in repeating gymnastic elements at home, 66.7 % of parents (32 people) noted that the child «regularly reproduces exercises, shows new movements», 20.8 % (10 people) – «sometimes repeats something from training», and only 12.5 % (6 people) – «shows no interest in repeating». Thus, more than two-thirds of the sample demonstrated selfmotivated activity outside the training space, which is an indirect indicator of the child's internal interest.

The results of pedagogical observation confirmed the above-mentioned trends. In 43 out of 48 cases, children entered the gym willingly, with positive emotions, actively responded to organizational moments (greetings, warmup, play exercises), and demonstrated readiness to engage in new motor patterns. In 5 cases, during the first three classes, slight manifestations of anxiety or insecurity were observed, which gradually disappeared under the conditions of stable support from the coach and an emotionally comfortable environment.

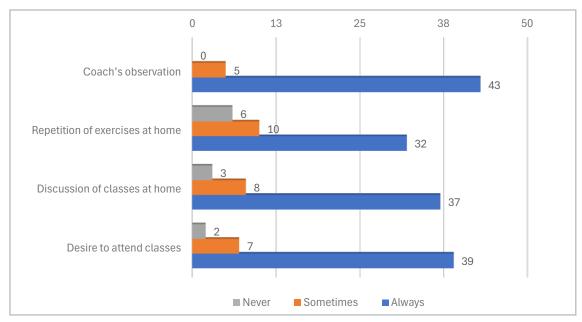


Fig. 2 Frequency of manifestations of the child's positive emotional response to participation in classes

According to the combined data of the parental survey and the pedagogical observation presented in Figure 2, a high level of positive emotional involvement of children in rhythmic gymnastics classes was recorded. This indicates the effectiveness of the methodological techniques used in the preparatory group, in particular the importance of emotional support, play-based forms, and a non-coercive pace of introducing motor loads.

After analyzing the children's emotional attitude toward the classes, attention was focused on the style of pedagogical interaction as a key factor influencing the stability of motivation and the quality of involvement in the training process. The study of this aspect was carried out by combining questionnaire data obtained from parents with a qualitative analysis of coaches' responses during semi-structured interviews. The obtained results indicate a significant influence of the coach's communication style and methodological techniques on maintaining the child's interest in rhythmic gymnastics.

To the questionnaire question «How does your child respond to praise from the coach?» 79.2 % of parents (38 people) answered that «the reaction is positive, emotional uplift is observed», another 16.7 % (8 people) noted «the reaction is calm, but self-confidence increases», and only 4.1 % (2 people) reported «no noticeable reaction». These responses indicate the importance of positive

feedback for forming in the child not only self-confidence but also internal satisfaction from participating in the class.

The results were even more pronounced for the question «Does the coach's communication style (tone, support, praise, freedom of action) matter to your child»? The vast majority of parents – 85.4 % (41 people) – confirmed that «yes, the coach's style influences the child's mood and activity». Another 10.4 % (5 people) indicated that «partly – on some days a difference is noticeable», and only 4.2 % (2 people) considered that «the child does not care how exactly the coach behaves».

In the coaches' responses, it was confirmed that children are sensitive to changes in the emotional climate of the class, particularly to the tone of voice, the sequence of instructions, the recognition of efforts, and the possibility of creative improvisation. According to one coach, «at the age of 3–6, it is important for children that every movement is noticed and approved, and that the atmosphere of the class is not tense or demanding». It was also noted that the best results were shown by children who received individualized praise, even in a small form – through a smile, a nonverbal gesture, or personalized address.

The summarized data are presented in Table 2, which illustrates the generalized responses of parents regarding the influence of the style of pedagogical interaction on the child's motivation.

Table 2 - Parents' responses regarding the influence of the style of pedagogical interaction on the child's motivation

Question	Answer option 1	Answer option 2	Answer option 3
Child's reaction to the coach's praise	Positive reaction, emotional uplift (38 persons, 79.2 %)	Calm reaction, increased self- confidence (8 persons, 16.7 %)	No noticeable reaction (2 persons, 4.1 %)
Influence of the coach's inter- action style (tone, support, freedom of action)	Yes, the coach's style influences the child's mood and activity (41 persons, 85.4 %)	Partly – on some days a difference is noticeable (5 persons, 10.4 %)	It does not matter how the coach behaves (2 persons, 4.2 %)

The data presented in Table 2 demonstrate consistency in parents' responses regarding children's sensitivity to the style of pedagogical interaction. The absolute majority of respondents indicated a positive reaction of the child to the coach's approval, which testifies to the high motivational significance of feedback. In addition, the perception of the coach's emotional tone, support, and freedom of action proved to be an important factor directly correlated with children's activity and involvement. The distribution of responses also confirms that only a small part of parents considered the coach's style as a neutral or secondary factor. This allows us to conclude about the leading role of the pedagogical approach as an environmental resource of motivational influence at an early age.

The generalization of the results of the survey, pedagogical observation, and expert assessments of the coaches made it possible to identify that children's motivational involvement in rhythmic gymnastics classes was formed on the basis of a combination of external and internal factors, the effects of which in most cases were complementary. According to the responses to the final questionnaire question *«Which factor, in your opinion, is the main motivator for your child»?*, 33.3 % of parents (16 people) indicated *«emotional satisfaction from the*

very process of movement», another 25 % (12 people) chose the option «parental approval and support at home», and 20.8 % (10 people) – «the atmosphere of play and collective activity».

Another 14.6 % of respondents (7 people) indicated «the coach's positive attitude / the desire to please the adult» as the determining motive. The remaining 6.3 % (3 people) chose the option «imitation of other children / the desire not to fall behind in the group». Thus, in three out of four responses, parents actually recorded internal motivation as dominant or as one formed through a supportive environment.

These data are fully consistent with theoretical conceptions of the motivational structure of preschool age, according to which play, emotional, and social components dominate. At the same time, as the coaches' interpretations indicated, the ability to create a context of play, provide space for motor improvisation, and at the same time ensure the recognition of the child as a subject of physical activity proved to be decisive in maintaining sustained interest in classes.

The graphical representation of the cumulative results regarding the motivational factors of children's participation in the training process is presented in Figure 3.

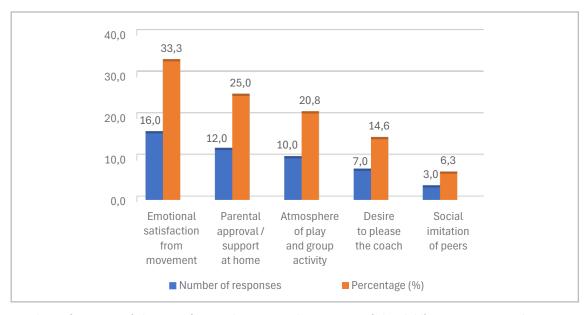


Fig. 3 Cumulative frequency of the most frequently mentioned motivators of the child's participation in the training process (according to parents' assessment)

The data presented in Figure 3 indicate the dominance of emotionally colored and socially supported motivators in the motivational structure of preschool children. The smallest share is represented by external imitation models, while the largest is internal satisfaction from motor activity. This points to a high level of sensory and affective involvement of children in the training process, which is characteristic of this age period and indicates the potential for the formation of stable motivation in the future.

Discussion

The results of the conducted study confirmed the existence of an integral motivational structure that determines the participation of preschool children in systematic rhythmic gymnastics classes. The basis of this structure was formed by both internal and external factors, which were manifested in behavioral expressions, emotional involvement, and reactions to the training process. In their content, the motives identified in children

aged 3–6 differed significantly from the motivational structure of schoolchildren, which is most often described by researchers of physical education. Unlike the cognitively rationalized responses of adolescents, preschoolers were dominated by sensory, emotional, and socially colored components, which corresponds to conceptions about the peculiarities of motivation in preschool age (according to the works of Vygotsky, Elkonin, Montessori, and modern empirical studies [13; 25]).

In contrast to elementary school students, where motives often have a utilitarian or competitive character (for example, achieving results, self-affirmation through comparison), in children aged 3–6 the aesthetic-emotional motive predominates, which was confirmed by the responses of 62.5 % of parents who identified «flexibility, grace, and beauty» as the main reason for choosing rhythmic gymnastics for their child. Such a predominance of aesthetic factors indicates the influence of the adult environment on the child's primary motivational orientation, but also demonstrates the high potential of gymnastics as a tool for forming a sense of rhythm, form, proportion, and order in physical development.

The positive attitude of children toward the classes, documented both through the survey and pedagogical observation, confirmed the data on the importance of the emotional background of training. The child's regular desire to participate in training, active repetition of movements at home, as well as the attempt to share impressions after class, indicate that the training process itself is a source of satisfaction rather than merely the fulfillment of an adult's tasks. This distinguishes the motivational mechanism of a preschooler from that of an adolescent, who more often engages in physical activity through the pursuit of competition or social recognition [8; 24].

A special role in the formation of children's sustained involvement was played by the coach's pedagogical style. The majority of parents (over 85 %) confirmed that the style of interaction, in particular emotional support, praise, the possibility of self-expression, and the absence of excessive pressure, has a direct impact on the child's motivation. These data correlate with the provisions of self-determination theory (Deci & Ryan), which state that the satisfaction of three basic psychological needs – for support, autonomy, and competence – is a prerequisite for the development of intrinsic motivation. The coaches who participated in the interviews confirmed that it was individualized praise and the inclusion of play elements that produced the greatest effect when working with this age group [23].

Special attention should be paid to the identified multicomponent nature of motivation, which was manifested in the responses to the final questionnaire question. Some parents indicated that the main motivator for the child was approval at home (25 %), others—the atmosphere

of collective play (20.8 %) or the desire to please the adult (14.6 %). Only a small part (6.3 %) associated motivation with the imitation of peers. This makes it possible to assert that in preschool age the leading role in maintaining interest in classes is played by communicative interaction with the adult, emotional security, and the structure of the classes, rather than social hierarchy or group status, which are characteristic of middle and high school students [17; 24].

The presented results provide grounds to consider rhythmic gymnastics as an effective means of pedagogical influence in the system of early physical education, provided that key principles are observed: play-based organization of the class, positive reinforcement, gradual complication of material, and a flexible approach to the individual abilities of the child. In addition, the obtained data emphasize the importance of the family environment as a factor of either supporting or, conversely, weakening the child's interest in classes: parents who regularly approved participation in training, showed interest in the process, and encouraged the demonstration of movements at home, in fact performed the function of an additional reinforcing factor [13].

Despite the consistent conclusions obtained, the study has limitations due to the specifics of the sample – only children from one sports school participated, which complicates the extrapolation of the results to broader populations. In addition, the indirect nature of the assessments (through parents and coaches) does not allow for the direct recording of the child's subjective motivation, which is a typical limitation of studies with young children. To increase the validity of further research, it is advisable to apply methods of behavioral mapping, micro-observation, as well as to include evaluations of psychologists or speech therapists working with this group of children [15].

Overall, the obtained results confirm that at the age of 3–6, the formation of motivation for rhythmic gymnastics is a multilevel process that combines emotional, communicative, and sensory aspects. The high level of positive emotional involvement and the persistent desire to repeat motor actions outside the class indicate the appropriateness of using rhythmic gymnastics as a tool not only for physical development but also for the general emotional and personal growth of the child.

Conclusions

A set of factors determining the motivation of children aged 3–6 to participate in rhythmic gymnastics classes in the context of the educational process was identified. The conducted study demonstrated the presence of a stable positive emotional attitude of children toward the training process, which was confirmed both by parents' questionnaire responses and by pedagogical observation data.

The main motivational factors of children's participation in classes were found to be: emotional satisfaction from motor activity, approval and support from parents, a favorable atmosphere of group interaction, a friendly communication style of the coach, and the possibility of self-expression through play. It was established that motivation was formed most effectively under conditions of emotionally supportive and methodologically flexible pedagogical guidance, focused on the individual characteristics of preschool children.

A significant part of parents noted that it is precisely the style of pedagogical interaction – praise, encouragement, the absence of pressure – that significantly influences the child's activity, interest, and regularity of participation in training. This confirms the necessity of consistently applying an individualized approach to education within children's sports sections.

References

- Au, W. W., et al. (2025). Effects of a physical activity-enhanced curriculum on preschoolers' movement behaviour and fitness. *Journal* of *Physical Activity & Health*, 23, 122-132. https://doi.org/10.1016/j. jesf.2025.03.001
- Behh, I. D. (2008), Vykhovannya osobystosti [Education of personality]. Lybid, Kyiv. 848 p. [in Ukraine]
- Carcamo-Oyarzun, J., et al. (2023). Motor competence, motivation and enjoyment in physical education classes. *Physical Education and Sport Pedagogy*, 1–16. DOI:10.1080/17408989.2023.2265399
- Honchar, L., Gantcheva, G., Borysova, Y., Kovalenko, N. (2023). The influence of the "Rhythmic Gymnastics for Preschoolers" program on the culture of movement in 5–6-year-old children. *Slobozhanskyi Herald of Science and Sport*, 14(3), 311–322. https://doi.org/10.52165/ sgi.14.3.311-322
- Huang, W., et al. (2022). Effects of kindergarten and family environment on children's physical activity and fitness. Frontiers in Public Health, 10, 1–13. DOI:10.3389/fpubh.2022.904903
- Kippe, K. (2025). Physical activity in preschool: the role of employees' motives and their participation influence on children's physical activity levels. *Early Childhood Research Quarterly*, 1–15. https://doi. org/10.1080/09575146.2025.2497382
- Krasmik, Yu. N., Aimaganbetova, O. Kh., Rogalyova, L. N. (2021). Features of motivation for rhythmic gymnastics in preschool girls. The Journal of Psychology and Sociology, 77(2), 115–123. https://doi. org/10.26577/jpss.2021.v77.i2.06
- Laure, M., Habe, K. (2023). Stimulating rhythmic abilities in preschoolers through musicmovement. *Early Childhood Education Journal*, 51(5), 457–468. https://doi.org/10.1007/s10643-023-01459-x
- Maslow, A. H. (2011), Iyerarkhiya potreb: teoriya Iyuds'koyi motyvatsiy [Hierarchy of Needs: A Theory of Human Motivation]. Kindle Edition. 405 p. [in Ukraine]
- McClelland, D. C. (2007). Papers of David McClelland, 1900–1998: An inventory. Harvard University Archives. Retrieved from http://oasis. lib.harvard.edu/oasis/deliver/~hua04001
- Permana, A. G., et al. (2013). Effect of rhythmic gymnastics on dynamic balance in children with hearing impairment. *Journal of Adapted Physical Activity*, 10(2), 120–128. https://doi.org/10.52082/japa.2013.10.120
- Pracht, D. W., Houghton, V., Fogarty, K., & Sagas, M. (2020). Parents' motivations for enrolling their children in recreational sports. *Journal of Amateur Sport*, 6(1), 81-99. DOI:10.17161/jas.v6i1.8250
- Psykholohiia liudyny: L. S. Vyhotskyi ta suchasna nauka [Human Psychology: L. S. Vygotsky and Modern Science]. (2020), Nizhin. 419 p. [in Ukraine]

The obtained results confirmed the importance of creating a pedagogical environment in which the child's motivation is formed not through external pressure or the demand for achievement, but through support, involvement, and the play-based organization of motor activity. This is especially relevant for the age category of 3–6 years, where motivational structures are not yet fully formed and largely depend on the adult environment.

Further research should be directed toward expanding the sample, involving different forms of gymnastics classes, as well as applying additional methods of assessing motivation, including behavioral diagnostics and psychological mapping. This will make it possible to deepen the understanding of the processes of motivation formation at the early stages of sports development.

Conflict of interest. The author declares no conflict of interest.

- 14. Radaš, J., Stojković, R., FurjanMandić, G. (2023). Preschool children's motivation for rhythmic gymnastics training. *Croatian Journal of Education*, 65(7), 5–20. https://doi.org/10.15516/cje.v65i7.723781
- 15. Rogers, C. (1951). Client-Centered Therapy. Cambridge. 430 p.
- 16. Sánchez-Miguel, P. A., et al. (2013). The importance of parents' behavior in their children's sport motivation and enjoyment. *Journal of Sport Psychology*, 36, 169-177. DOI:10.2478/hukin-2013-0017
- 17. Stojković, R., Radaš, J. (2019). Rhythmic Gymnastics of the Early Childhood: music, play and movement. Early Childhood Studies, 12(2), 89–102. https://www.croris.hr/crosbi/publikacija/prilog-skup/723781?utm
- Tapia-Serrano, M. Á., et al. (2024). Analysis of motivational profiles of physical activity: differences across sociodemographic variables. *Psychology of Sport and Exercise*, 70, 1–9. DOI:10.1016/j. paid.2024.112837
- Vaskivska, G. O., Palamar, S. P., Kondratyuk, S. G. (2018). Psychodidactic determinants of the development of children of preschool age. Wiadomości Lekarskie, 71(6), 1207–1214. https://elibrary.kubg.edu. ua/id/eprint/24595
- Verdonschot, A., et al. (2024). Development and evaluation of the COM-PASS tool: teachers' capability, opportunity, and motivation to deliver school-based physical activity. *International Journal of Behavioral Nutrition and Physical Activity*, 21, 1–13. DOI:10.1186/ s12966-024-01640-4
- 21.Viñuela, Y., et al. (2023). Improving motivation in pre-school education through the use of active methodologies. Frontiers in Education, 7, 1-19. https://doi.org/10.3389/feduc.2022.1094004
- 22. Xaitbayeva, B. B. (2024). The role and methods of teaching rhythmic gymnastics in school physical education. European Journal of Pedagogical Initiatives and Educational Practices, 2(1), 23-26. https://europeanscience.org/index.php/4/article/view/400/392
- 23.Yu, Q., Pan, X., Liu, Z., Deng, C. (2025). Effect of gymnastics on balance ability in children aged three to six years. Frontiers in Psychology, 16. https://doi.org/10.3389/fpsyg.2025.1549741
- 24. Zha, P., Shen, Q. Q., Ren, Y. C. (2022). Effects of child gymnastics on gross motor development in preschoolers. *Journal of Sports Science & Medicine*, 21(3), 301–310. https://doi.org/10.52082/jssm.2022.21.301
- 25. Znamenskiy, A., Petrova, E. (2024). Effects of 8 weeks of rhythmic physical activity on gross motor development in children aged 4–5 years. *International Journal of Exercise Science*, 17(4), 234–242. https://doi.org/10.3928/10974124-AR-20240201-01

doi: 10.32626/2309-8082.2025-30(3).137-143

надмірною масою тіла

THE EFFECT OF REGULAR JOGGING ON THE HEALTH AND PHYSICAL FITNESS OF OVERWEIGHT WOMEN OF VARIOUS AGES

Olga Samolyuk

https://orcid.org/0000-0001-7011-4853

Pridnestrovian State University named after T. G. Shevchenko, Tiraspol (the Republic of Moldova)

corresponding author - O. Samolyuk: ms.samolyuk2@gmail.com

Ольга Самолюк. Вплив регулярних занять бігом підтюпцем на стан здоров'я i рівень фізичної підготовленості жінок різного віку з

Анотація. Проблема збереження і примноження здоров'я

The problem of preserving and increasing women's health has been relevant for many years. One of the main factors affecting the state of body systems is the presence or absence of excess body weight. Today, jogging is becoming increasingly popular among people of different ages and levels of physical fitness as a means of improving their quality of life. Experts agree that different ages have their own body characteristics that need to be taken into account when organizing physical exercises. The issue of differences in the effect of jogging on the health and fitness levels of women in the first and second periods of adulthood remains uncertain. The purpose of the study: to study the effect of jogging-based training sessions for 12 months 3 times a week on health and physical fitness in women aged 22-26 and 48-54 years. Materials and methods of research: analysis and synthesis of data from scientific sources, testing of physical fitness, measurement of anthropometric data and physiological indicators, pedagogical experiment, mathematical methods of statistical data processing. The study involved women who were overweight and engaged in a single jogging program: experimental group No. 1 (N=12) - 22-26 years old and experimental group No. 2 (N=15) - age 48-54 years). Results. An analysis of current research in the field of recreational aerobic physical exercises with women of various ages who are overweight was conducted; a unified jogging program was developed for young and mature women who are overweight; the impact of long-term regular jogging on health and physical fitness in women of various age groups was assessed. Conclusions. The study showed that the age of overweight women affects the productivity of jogging. The application of a joggingbased training program can significantly improve the harmony of the physique, breathing quality, increase strength, agility, flexibility and physical performance in young (22-26 years old) and mature (48-54 years old) women who are overweight. A more pronounced effect is observed in young women under equal conditions of study (weight loss, improved breathing quality, increased strength, dexterity and physical performance).

жінок актуальна протягом багатьох років. Одним з головних факторів, що впливають на стан систем організму, є наявність або відсутність надлишкової маси тіла. На сьогоднішній день у людей різного віку і рівня фізичної підготовленості все більшої популярності набуває біг підтюпцем як засіб поліпшення якості життя. Фахівці сходяться на думці про те, що в різному віці існують свої особливості організму, які необхідно враховувати при організації занять фізичними вправами. Залишається невизначеність щодо відмінності ефекту від занять бігом підтюпцем на показники здоров'я і рівень фізичної підготовленості у жінок першого і другого періоду зрілого віку. Мета дослідження: вивчення ефекту від застосування тренувальних занять на основі бігу підтюпцем протягом 12 місяців 3 рази на тиждень на показники здоров'я і фізичної підготовленості у жінок 22-26 років і 48-54 років. Матеріали і методи дослідження. аналіз і синтез даних наукових джерел, тестування рівня фізичної підготовленості, вимірювання антропометричних даних і фізіологічних показників, педагогічний експеримент, математичні методи обробки статистичних даних. У дослідженні взяли участь жінки, які мають надлишкову масу тіла і займаються єдиною програмою бігом підтюпцем: експериментальна група №1 (N=12) - 22-26 років і експериментальна група №2 (N=15) – вік 48-54 роки). Результати. Був проведе аналіз актуальних досліджень в області оздоровчих занять фізичними вправами аеробного характеру з жінками різного віку, що мають надлишкову масу тіла; розроблена єдина програма занять бігом підтюпцем для жінок зрілого віку, що мають надлишкову масу тіла; проведена оцінка впливу тривалих регулярних занять бігом підтюпцем на показники здоров'я і фізичної підготовленості у жінок різних вікових груп. Висновок. Проведене дослідження показало, що вік жінок, які мають надлишкову масу тіла, впливає на продуктивність занять бігом підтюпцем. Застосування програми тренувальних занять на основі бігу підтюпцем може сприяти достовірному поліпшенню гармонійності статури, якості дихання, збільшення сили, спритності, гнучкості і фізичної працездатності у жінок 22-26 років і 48-54 роки, що мають надлишкову масу тіла. Більш виражений ефект при рівних умовах занять у жінок молодого віку (зниження маси тіла, поліпшення якості дихання, підвищення сили, спритності і фізичної працездатності).

Keywords: women, jogging, age characteristics, physical fitness, women's health.

Ключові слова: жінки, біг підтюпцем, вікові особливості, фізична підготовленість, здоров'я жінок.

Introduction

The problems of preserving and enhancing women's health remain an important research agenda in various fields of knowledge: medicine, psychology, and sociology. Despite the fact that women live on average 5 years longer than men, however, women are more likely to get sick and seek medical help, which is mainly related to reproductive function [8]. Most often, women suffer from cardiovascular diseases. Cervical, breast, and lung cancers are also the most common and cause of premature death in women. Women

are also more likely than men to suffer from depression [6; 9; 35]. It is very important to follow the recommendations of health experts in order to prevent the occurrence and development of these diseases. Following a healthy lifestyle was and remains one of the main recommendations [31; 36].

The main risk factor for health is being overweight. The problem of obesity is global [33]. In many countries of the world, women are more susceptible to obesity, which is associated with hormonal characteristics and occupation, leading to a sedentary lifestyle [20; 22].

Age is an important indicator of possible risks to a woman's health. Depending on age, biological factors have different effects on a woman's health [30]. Many researchers associate physical activity and diseases of the reproductive function of women, and also note the difference in these patterns depending on age [4]. In this regard, it is necessary to study the effect of physical exercise on the health and physical fitness of young women, as well as overweight women of mature age, in order to prevent the occurrence of obesity. It is assumed that due to age-related health conditions (puberty and pre-menopause), physical exercise can be effective for women's health to varying degrees. Along with various training programs, aerobic training has a healing effect in the form of improving body proportions, increasing physical fitness and reducing body weight. The World Health Organization recommends that healthy people use low-intensity aerobic exercise for at least 150 minutes per week to reduce their risk factors for obesity [11; 12].

Jogging is becoming increasingly popular all over the world [1; 2; 34]. Continuous running at a low pace is a widely available and effective aerobic training, primarily to improve lipid metabolism [28]. There have also been studies indicating the positive effects of jogging at different ages on people's health [25], Studies over 35 years have shown that jogging reduces the risk of mortality and is associated with an increase in life expectancy in women by 5.6 years when adjusted for age [27; 28]. However, questions remain about the extent of the impact of jogging-based training programs for overweight women of various ages.

The presented study is aimed at studying the effect of jogging in women of the first and second periods of adulthood who are overweight and engaged in an identical program. The results of this study may be useful to those who organize and conduct wellness running classes with women, as well as researchers in the field of health and fitness. The data obtained can be used for recommendations in the field of healthy lifestyle and sports.

Materials and methods of research

The purpose of this study is to study the effect of regular jogging (12 months, three times a week for 60 minutes) on the physical health (body mass index, lung capacity) and physical fitness (exercise results) of women of different ages (the first period of maturity is 22-26 years and the second period of maturity is 48-54 years) who are overweight. Research objectives: to analyze the results of scientific work in the field of physiology and health of women of different ages, to study modern approaches to the content and organization of training sessions with overweight women, to consider recommendations for jogging training sessions; to develop and implement a

program of jogging training sessions for mature women; to conduct a comparative assessment of the impact of regular classes jogging on the physical health and physical fitness level of mature women.

The study involved women aged 22 to 54 years. As a result of the selection of 35 applicants, 27 women were selected to participate in the experiment. The participants of the experiment were divided into 2 groups according to their age. The experimental groups did not include women who dropped out of the training process for various reasons (for example, injuries or illnesses). Group No. 1 consisted of 12 women aged 22 to 26 years. Group No. 2 consisted of 15 women aged 48 to 54 years. The sample size was determined in accordance with the research methodology. The selection criteria for the groups were: age limits, the presence of overweight (body mass index from 25 to 30 kg/m²), the absence of chronic diseases and injuries that negatively affect the productivity of running, as well as lifestyle (sedentary lifestyle, assessed on the IPAQ scale). For group No. 1, the indicator of the level of physical activity should not exceed 21 points, for group No. 2 - not exceed 14 points. In accordance with the Helsinki Declaration on Conducting Research with Humans, all participants in the experiment were familiar with the research conditions, proposed tests and training tasks. The participants in the experiment gave their personal consent to participate in the study. Personal data of the participants in the experiment were not disclosed.

The duration of the experiment was 12 months. In addition, it took another 3 weeks to organize the study: 1 week to select participants and test the protocol physical fitness tests, 1 week to evaluate the test results before the experiment began, and 1 week to evaluate the test results after the experiment ended.

For the purposes of the study, anthropometric measurements were carried out. To determine the body mass index (kg/m²), body height was measured in the laboratory with an accuracy of 1 cm using a wall-mounted stadiometer and body weight with an accuracy of 10 grams using digital scales. The body mass index was calculated by dividing body weight in kg by the square of height in m². A functional test was also performed in the laboratory – an assessment of the level of vital lung capacity (liter) using a dry-air spirometer with an accuracy of 0.1 liters. The vital capacity of the lungs was calculated by determining the arithmetic mean between the three test parameters (maximum exhalation after maximum inhalation) [3].

Tests were also conducted to monitor the level of physical fitness. The following physical qualities were evaluated: strength (pull-ups on a low crossbar, number of times), flexibility (bending forward in a standing position, cm), physical performance (Harvard step test, points), agility (3 x 10 m shuttle run, seconds). Prior to the start

of the experiment, the subjects were trained to perform control tests. All physical fitness tests were conducted in accordance with age and gender norms (distance length, step height in the step test, strength and flexibility assessment equipment) [5].

The experimental data obtained were statistically processed based on the average values in the group. The average values, standard deviation, and square deviation of both groups were compared before and after the experiment. The reliability of the differences between the initial and final data was calculated using the Student's T-test. Values in the range from 2.2 (0.05) to 3.11 (0.01) with the number of degrees of freedom – 22 and values in the range from 2.14 (0.05) to 2.98 (0.01) with the number of degrees of freedom – 28 (for dependent groups of subjects) were considered reliable. Data analysis was based on comparing the dynamics of results in group No. 1 and No. 2. The normality of the distribution of dependent variables was assessed using the Shapiro-Wilk test.

The experimental program for groups No. 1 and No. 2 included classes three times a week for 12 months. Each lesson consisted of three parts: preparatory, main and final. The preparatory part of the lesson lasted 15 minutes and included breathing exercises (3 minutes), a set of standing exercises for the main muscle groups. Simple exercises in pairs or at the support (7 minutes) could also be used. At the end of the warm-up, walking exercises, simple running exercises or jumping exercises (5 minutes) were used. Immediately after the warm-up, the participants started the main part of the lesson - jogging. The main part of the lessons lasted 30 minutes. The final part of the class lasted 15 minutes and included walking (3 minutes), breathing exercises (5 minutes), stretching (7 minutes).

For the first 8 weeks, the participants used jogging, alternating it with walking, depending on their abilities. Thus, the principle of gradualness and accessibility of classes was observed. For the next 8 weeks, the jogging speed had to be at least 5 km/h. Then, at 5-6 months of classes, the jogging speed had to be at least 6 km/h, at 7-8 months of classes the speed had to be at least 7 km/h, at 9-12 months – at least 8 km/h. Thus, the principle of a gradual increase in developmental and training effects and the principle of age-related adequacy of physical activity were observed.

From September to December, training sessions were held in open areas – running on the stadium tracks was used. From December to March, training sessions were held in the indoor arena. From March to September, training sessions were held in the park, where running on the ground was used.

The participants had certain requirements for jogging technique. The forward tilt of the body is insignificant. The phase of flight in a step is small. Foot placement – rolling from heel to toe onto the projection of the hip joint. The hip extension in the step is insignificant. The arms are bent at the elbows at an angle of 90, the hands are gathered into a fist, but without tension. The shoulders are relaxed. Due to the fact that jogging differs from regular running by the speed of movement, the recommended jogging speed in the experimental groups should not exceed 10 km/h.

The study was conducted on the basis of T. G. Shevchenko Pridnestrovian State University (Republic of Moldova) in 2024.

The results of the research

The results in anthropometric measurements in group No. 1 before the start of the experiment showed that the majority of the participants in the program were overweight from 22 to 26 years old and, according to the Quetelet index, were in a condition preceding the diagnosis of "obesity". This is a body mass index from 25 to 30. When assessing external respiration, the average indicator in the group was closer to the lower limit of the norm. With a normal lung capacity for women of 2.5 to 4 liters, most of the participants showed test results of up to 3.1 liters.

After the experiment was completed, significant positive changes were observed in group 1, both in assessing the harmony of the physique and in assessing the quality of breathing. The body mass index decreased by an average of 3 points. Thus, the body harmony index approached the norm, but it was still within the "overweight" range, namely, at the lower limit (25-29.99). During the experiment, significant changes in body mass index were recorded at the level of p < 0.01 (the Student's T-test was at 7.5, while the significance of the differences was significant already at t = 2.2). Respiratory parameters improved by an average of 0.5 liters after the experiment. Significant positive changes in lung vital capacity were recorded at the level of p < 0.01 (Table 1).

Table 1 – Anthropometric and functional indicators in the age group from 22 to 26 years before and after the experiment, n = 12

la disata na	Before the experiment			Afte	er the experim		n	
Indicators	\overline{x}	S	m	\overline{x}	S	m	ί	р
Body mass index	28.7	3.2	1.1	25.4	2.5	0.8	7.5	<0.01
Vital lung capacity (liter)	2.9	0.5	0.15	3.4	0.4	0.1	7.0	<0.01

Note *The differences are significant at t = 2.2 (0.05) - 3.11 (0.01); (df = 22).

Prior to the start of the experiment, the participants of group No. 1 showed low results for their age group in tests to assess the level of physical fitness: strength, agility, flexibility and physical performance. With a normal 8-fold pull-up on the crossbar, only 5.5 was recorded, which may indicate weakness of the shoulder girdle muscles and the negative effect of overweight on performance in the test. The indicators of dexterity in cyclic locomotion were 0.5 seconds below the norm. Hip joint mobility during the forward tilt was normal before the start of the experiment. The level of physical performance, assessed using the Harvard step test, was below average in the group of women aged 22 to 26 years before the start of the experiment.

After the experiment was completed, the strength of the shoulder girdle muscles increased significantly. Positive significant changes (p < 0.01) were recorded in pull-ups on a low crossbar, where the average result approached the norm for this age in women. The results in shuttle running improved by an average of 1.2 seconds. The changes are significant at the level of p = 0.01. The results in leaning forward in the standing position also increased. The average indicator increased by 3 cm, the reliability of the changes was recorded at the level of p < 0.01. The level of physical performance in the Harvard step test reached average values with a confidence of p = 0.01 (Table 2).

Table 2 – Indicators of physical fitness in the age group from 22 to 26 years before and after the experiment, n = 12

Indicators	Befor	Before the experiment			After the experiment			р
indicators	\overline{x}	S	m	\overline{x}	S	m	t	ρ
Pull-ups on the crossbar (number of times)	5.5	1.5	0.5	7.5	1.5	0.5	6.6	<0.01
3x10 m Shuttle run (s)	10.8	1.5	0.0	9.6	1.8	0.6	5.5	<0.01
Forward tilt (cm)	7.7	3.5	1.2	10.5	3.1	0.9	5.8	<0.01
Harvard Step Test (score)	58.5	2.9	0.9	66.5	2.2	0.7	6.2	<0.01

Note *The differences are significant at t = 2.2 (0.05) - 3.11 (0.01); (df = 22).

Prior to the start of the experiment, low indicators of body harmony and respiratory quality were noted in the age group from 48 to 54 years. The body mass index was at the level preceding obesity. The indicators of external respiration in the group were fixed at an average level of 3.0 liters, which is the norm for women.

After the experiment was completed, positive changes were noted in both indicators. The body harmony index significantly improved (p < 0.01). The body mass index decreased by an average of 1 point, however, it remained in the range marked as "overweight". The vital capacity of the lungs increased by an average of 0.2 liters, which ensured the reliability of empirical data at the level of p = 0.01 (Table 3).

Table 3 – Anthropometric and functional indicators in the age group from 48 to 54 years before and after the experiment, n = 15

In disastana	Before the experiment			After the experiment				p
Indicators	\overline{x}	S	m	\overline{x}	S	m	ί	þ
Body mass index	28.5	2.7	0.9	27.5	3.3	1.1	4.2	<0.01
Vital lung capacity (liter)	3.0	0.3	0.9	3.2	0.25	0,08	5.3	<0.01

Note *The differences are significant at t = 2.14 (0.05) - 2.98 (0.01); (df = 28).

In the age group from 48 to 54 years old, low scores in physical fitness tests were revealed before the start of the experiment. The strength level of the shoulder girdle muscles was in the normal range. Dexterity in cyclical movements was slightly below normal. The level of hip joint mobility when performing a forward tilt was in the normal range. Physical performance in the Harvard step test was recorded at a level below normal, closer to the border with unsatisfactory indicators.

After the pedagogical experiment, there was an increase in the results when performing all the proposed tests. The indicators in pull-ups on the low bar increased

by an average of 1.3 times, which corresponds to the norm for women of this age. The results were reliable at p=0.01. The performance of the agility test in shuttle running increased by an average of 0.6 seconds, which suggests that the differences were significant compared with the initial level (p<0.05). The results in hip mobility improved by an average of 3 cm. Flexibility increased significantly at the level of p<0.01. The level of physical performance in group 2 increased significantly during the experiment (p<0.05), the average score increased by 2.2 points, but remained below the average (Table 2).

Table 4 - Indicators of physical fitness in the age group from 48 to 54 before and after the experiment, n = 15

	Befor	e the experi	iment	Afte	r the experi		n		
Indicators	\overline{x}	S	m	\overline{x}	S	m	τ	р	
Pull-ups on the crossbar (number of times)	3.5	1.3	0.4	4.8	1.5	0.5	4.1	<0.01	
3x10 m Shuttle run (s)	11.5	0.8	0.25	10.9	0.12	0.04	2.9	<0.05	
Forward tilt (cm)	6.1	2.3	0.8	9.1	3.5	1.2	5.5	<0.01	
Harvard Step Test (score)	57.7	2.3	0.8	59.5	1.7	0.6	2.9	<0.05	

Note *The differences are significant at t = 2.14 (0.05) - 2.98 (0.01); (df = 28).

Discussion

It is well known that regular physical activity can have a positive effect on human health and improve the quality of life [7; 10; 15]. At the same time, it is important to take into account the specifics of the physical activity used. In particular, the same physical exercises may have different effectiveness due to the difference in the number of participants [14; 16; 18]. In this study, the results of long-term continuous jogging by women of the first and second periods of adulthood were demonstrated. The peculiarities of the effect of jogging on the indicators of body harmony, vital capacity, strength, dexterity, flexibility, and physical performance in overweight women belonging to different age groups have been revealed. Statistical patterns have been established that indicate the benefits of jogging on certain indicators of women's health, depending on age.

Being overweight leads to various health problems for women. Obesity prevents proper movement, reduces performance, increases the risk of developing cardiovascular diseases, type 2 diabetes, and increases the load on the musculoskeletal system [9]. A number of scientific studies show that during aerobic exercise, the heart and blood vessels are protected from damage [23; 32]. It has also been found that regular physical exercise in the form of low-intensity walking and running reduces premenstrual symptoms in women of fertile age, as well as menopausal symptoms in older women [19].

Since strength exercises have no proven effectiveness in reducing body weight, the study was devoted to studying the effectiveness of jogging as the most affordable means of aerobic training [21; 35]. It has been established that even short-term short-term aerobic exercise can have a clinically useful form of cardioprotection [13]. Low-intensity aerobic exercise with prolonged use can reduce body fat mass [24]. It is also known that up to several months of regular practice are needed to achieve the cardiovascular effect of running at a low pace [29]. It has been established that organized physical exercises three times a week bring the greatest effectiveness if the course duration exceeds 8 weeks [12]. In this regard, it was decided to organize a long-term experiment for 12 months in order to observe the actual results.

To date, there are no unambiguously recommended aerobic training programs for overweight women. It is known that during high-intensity aerobic exercise in women aged 45-50 years, the level of cardiac tropin may increase, which indicates damage to the fibers of the heart muscle [8; 29]. It has also been found that high-intensity aerobic exercise is not recommended as a regular exercise for menopausal women, despite the fact that pulmonary ventilation improves [24]. In general, we pay attention to the opinion of experts who note that aerobic exercise can have different effects on body composition when it comes to women before or after menopause [26]. Thus, the observed parameters and the studied groups of people correspond to the recommendations reflected in previous scientific studies.

One of the main indicators of health studied in the experimental groups is the body mass index, since overweight women participated in the experiment. A change in body mass index in adults implies only an increase or decrease in body weight due to the lack of body growth in length. In the age group of women from 22 to 26 years old, significant changes were observed towards the harmonization of the physique. Despite the fact that the average remained within the overweight range, the changes were more significant than in the group of women aged 48 to 54 years. For comparison, the Student's T-test in Group 1 was 7.5 versus 4.2 in Group 2. Thus, regular jogging three times a week for 30 minutes for 12 months can contribute to the normalization of the physique of overweight young and mature women. However, women aged 48 to 54 years old may be advised to increase their training loads and adjust their nutrition in order to achieve a more pronounced effect. Also, in order to correct their physique, mature women may need a longer cycle of jogging before menopause and during menopause than the one proposed in the experiment.

A number of studies indicate that short-term highintensity workouts improve the function of the respiratory system, in particular, improve lung ventilation [24]. On the other hand, high-intensity cardio loads can be dangerous for the condition of the heart muscle and lead to impaired vascular heart function in mature women. Also, high-intensity cardio is undesirable for all overweight people, regardless of age [29]. In this regard, it is important to evaluate the effect of moderate cardio loads on lung function in women of different ages. As this study showed, women in the age group of 22-26 years experienced a significant improvement in respiratory function under the influence of prolonged low-intensity jogging for 1 year. Statistically significant changes occurred in this age group, and lung capacity improved by an average of 0.5 liters. Significant improvements in breathing quality were also found in the group of women aged 48-54 years. The average increased by 0.2 liters. Thus, we can say that the technique of jogging three times a week for 30 minutes for 12 months can be effective for both young and mature women who are overweight. It should also be noted that younger women have achieved more significant changes with the same workload.

In addition to the obvious effect of prolonged aerobic exercise on body weight and respiratory function, there is a possibility of improving physical fitness. Reducing body fat can make it easier to perform many exercises, in particular, strength exercises. According to the results of the experiment, in the group of women aged 22-26 years, the results significantly improved when performing pullups while lying on the crossbar. There were also significant improvements in the results of this test in the group of women aged 48-54 years. However, in group No. 1, the results increased more significantly. The student's T-test is 6.6, while in group 2 it is 4.1. It can be assumed that as a result of the training program, changes in body mass index in both experimental groups contributed to an increase in the relative strength of overweight women. In this case, age also affects the productivity of aerobic training. With the same jogging training programs, the average performance of strength exercises in the group of young women is higher (the result improved by an average of 2 times) than in the group of mature women (the result improved by an average of 1.3 times).

Along with the effectiveness of performing power movements, the quality of movement performance is an indicator of the effectiveness of the training program. Prolonged exercise or recreational physical education has been proven to save energy consumption by improving muscle control [13]. The results of this study indicate that the dexterity of movements in the group of women aged 22-26 years significantly improved at the level of p < 0.01, while in the group of women aged 48-54 years, the results in the dexterity test also had a significant improvement, however, inferior to group No. 1 (p < 0.01). In general, the improvement in the quality of movements can largely be the result of using various general development exercises in each of the classes. The gained motor experience combined with the effect of jogging is undoubtedly a trigger for improving agility in women, regardless of age. Prolonged and regular jogging in combination with warm-up and hitch can be recommended to improve the quality of movement in overweight women, regardless of age. However, it is important to know that the process of improving the quality of movement in the older age group will be slower than in younger women.

The mobility of the hip joints and the condition of the musculoskeletal system as a whole depend on the quality of human movements. In this regard, age may be a factor that negatively affects muscle elasticity. Properly organized training sessions should help improve joint mobility, which should subsequently lead to a reduction in injuries and inflammation [17]. The study showed that women of different ages who do not exercise regularly may have satisfactory hip joint mobility (when bending forward). Nevertheless, regular jogging and general development exercises can significantly improve flexibility, regardless of the age of the participants (p < 0.01).

Changes in physical performance indicators indicate the complex nature of the effects of the training programs performed. The physical activity performed as part of the experiment was aerobic in nature, and therefore the cardiovascular system's response to physical activity in women was expected to improve. However, in the group of women aged 22-26 years, the results in the Harvard step test were significantly higher (p < 0.01) than in the group of 48-54 years (p < 0.05). Long-term experience of running in young and mature women can be useful for optimizing the use of oxygen in muscles, which is beneficial for further progress. In the future, we can hope for a further improvement in physical performance in overweight women and the emergence of a willingness to perform higher-intensity exercises.

Conclusions

- 1. The body of mature women in the presence of overweight needs regular aerobic exercise to reduce the risk of concomitant diseases. The effect of classes depends on the age of the women.
- 2. The use of a training program three times a week for an hour for 12 months, including jogging (30 minutes), warm-up (15 minutes) and hitching (15 minutes), can significantly improve the harmony of the physique, breathing quality, increased strength, agility, flexibility and physical performance in women of the age groups 22-26 overweight and 48-54 years old.
- 3. The age of overweight women affects the productivity of jogging. A more pronounced effect, under equal conditions of occupation, in younger women (weight loss, improved breathing quality, increased strength, dexterity, and physical performance). Additionally, more thorough research can answer the question of how the jogging program should be changed for overweight women aged 48-54 in order to achieve a more pronounced health effect.

Conflict of interest. The authors state that there is no conflict of interest.

References

- Arkhipov, O. (2024), «Ozdorovchij big yak zasib zajnyat' z rozvitku silovoï vitrivalosti dlya ditej i pidlitkiv» [Health-improving running as a means of training in the development of strength endurance for children and adolescents]. Scientific journal of the Mykhailo Dragomanov Ukrainian State University, 9 (182), 9-13. https://doi.org/10.31392/UDU-nc. series15.2024.9(182).01 [in Ukraine]
- Nazaruk, V. L., Dnestryansky, B. V. (2023), «Ozdorovitel'naya hod'ba i beg podtyupcom kak sredstva fizicheskoj terapii. Organizaciya i struktura zanyat» [Wellness walking and jogging as a means of physical therapy. The organization and structure of the company]. Nursing, 1, 21-24. [in Ukraine]
- ACSM. (2021). ACSM's guidelines for exercise testing and prescription (11th ed.) [Electronic resource]. Wolters Kluwer. https://www.wolterskluwer.com/en/know/acsm/guidelines-for-exercise-testing-and-prescription
- Ainsworth, B.E., Haskell, W.L., Herrmann, S.D. (2011). Compendium of Physical Activities: a second update of codes and MET values. *Med Sci Sports Exerc*, 43,1575-1581. doi: 10.1249/MSS.0b013e31821ece12.
- Ainsworth, B., Cahalin, L., Buman, M., &. Ross, R. (2015). The current state of physical activity assessment tools. *Progress in Cardiovascular Diseases*, 57(4), 387-395. https://doi.org/10.1016/j.pcad.2014.10.005
- Amadou, A., Ferrari, P., Muwonge, R. (2013). Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: A systematic review and dose-response meta-analysis. *Obesity Reviews*, 14(8), 665-678. https://doi.org/10.1111/obr.12028
- Amanat, S., Ghahri, S., Dianatinasab, A., Fararouei, M., & Dianatinasab, M. (2020). Exercise and type 2 diabetes. Advances in Experimental Medicine and Biology, 1228, 91-105. https://doi.org/10.1007/978-981-15-1792-1_6
- Amrein, K., Amrein, S., Drexler, C. (2012). Sclerostin and its association with physical activity, age, sex, body composition, and bone mineral content in healthy adults. *Journal of Clinical Endocrinology & Metabolism*, 97(1), 148-154. https://doi.org/10.1210/jc.2011-2152
- Avgerinos, K. I., Spyrou, N., Mantzoros, C. S., & Dalamaga, M. (2019). Obesity and cancer risk: Emerging biological mechanisms and perspectives. *Metabolism: Clinical and Experimental*, 92, 121-135. Advance online publication. https://doi.org/10.1016/j.metabol.2018.11.001
- Brahm, H., Ström, H., Piehl-Aulin, K., Mallmin, H., & Ljunghall, S. (1997).
 Bone metabolism in endurance trained athletes: A comparison to population-based controls based on DXA, SXA, quantitative ultrasound, and biochemical markers. *Calcified Tissue International*, 61(6), 448-454. https://doi.org/10.1007/s002239900366
- 11. Colberg, S. R., Sigal, R. J., Regensteiner, J. G., et al. (2010). Exercise and Type 2 Diabetes: The American College of Sports Medicine and the American Diabetes Association: joint position statement. *Diabetes Care*, 12 (33), 147-167. Doi: https://doi.org/10.2337/dc10-9990
- Cox, C. E. (2017). Role of Physical Activity for Weight Loss and Weight Maintenance. *Diabetes Spectr*, 3 (30), 157-160. Doi: https://doi. org/10.2337/ds17-0013
- Craig, C. L., Marshall, A. L., Sjostrom, M., et al. (2003). International physical activity questionnaire: 12-country reliability and validity. *Medicine and Science in Sports and Exercise*, 35, 1381-1395.
- Dekker, J., Nelson, K., Kurgan, N., et al. (2017). Wnt signaling–related osteokines and transforming growth factors before and after a single bout of plyometric exercise in child and adolescent females. *Pediatric Exercise Science*, 29(4), 504-512. https://doi.org/10.1123/pes.2017-0042
- Erickson, C. R., Vukovich, M. D. (2010). Osteogenic index and changes in bone markers during a jump training program: A pilot study. *Medicine & Science in Sports & Exercise*, 42(8), 1485-1492. https://doi.org/10.1249/ MSS.0b013e3181d0fa7a
- 16. Falk, B., Haddad, F., Klentrou, P., et al. (2016). Differential sclerostin and parathyroid hormone response to exercise in boys and men. Osteoporosis International, 27(3), 1245-1249. https://doi. org/10.1007/s00198-015-3310-z
- Franck, H., Beuker, F., Gurk, S. (1991). The effect of physical activity on bone turnover in young adults. Experimental and Clinical Endocrinology, 98(1), 42-46. https://doi.org/10.1055/s-0029-1211099

- Gombos, G. C., Bajsz, V., Pék, E., et al. (2016). Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. *BMC Musculoskeletal Disorders*, 17(1), 1-8. https://doi.org/10.1186/s12891-016-1109-5
- Gould, L. M., Gordon, A. N., Cabre, H. E., et al. (2022). Metabolic effects of menopause: a cross-sectional characterization of body composition and exercise metabolism. *Menopause*, 4 (29), 377-389. Doi: 10.1097/ GME.000000000001932
- Grammatikopoulou, M. G., Nigdelis, M. P., Goulis, D. G. (2022).
 Weight gain in midlife women: Understanding drivers and underlying mechanisms. *Current Opinion in Endocrine and Metabolic Research*, 27, 100406. Doi: 10.1016/j.coemr.2022.100406
- Guevara, N. M., Galván, C. T. Izquierdo, D. G., (2025). Lifestyle: Physical Activity. Menopause, 3 (17), 317-327. Doi: 10.1007/978-3-031-83979-5
- Hamasaki, H. (2024). The Physical Activities in Obesity. Obesity, 13, 169-184. Doi: 10.1007/978-3-031-62491-9
- 23. Jamka, M., Mądry, E., Krzyzanowska-Jankowska, P., et al. (2021). The effect of endurance and endurance-strength training on body composition and cardiometabolic markers in abdominally obese women: a randomised trial. Scientific Reports, 1 (11). Doi: 10.1038/s41598-021-90526-7
- Klonizakis, M., Moss, J., Gilbert, S., et al. (2014). Low-volume highintensity interval training rapidly improves cardiopulmonary function in postmenopausal women. *Menopause*, 21, 1099. Doi: 10.1097/ GME.000000000000000208
- 25. Lee, DC, Pate, RR, Lavie, CJ, et al. (2014). Leisure-time running reduces all-cause and cardiovascular mortality risk. *J Am Coll Cardiol*, 64(5), 472-481. doi: 10.1016/j.jacc.2014.04.058.
- Nie, J., Zhang, H., He, Y., et al. (2019). The impact of high-intensity interval training on the cTnT response to acute exercise in sedentary obese young women. Scand J Med Sci Sports, 29, 160-170.
- Schnohr P, Marott JL, Lange P, Jensen GB. (2013). Longevity in male and female joggers: the Copenhagen City Heart Study. Am J Epidemiol, 177(7), 683-9. doi: 10.1093/aje/kws301.
- 28. Schnohr P, O'Keefe JH, Marott JL, et al. (2015). Dose of jogging and long-term mortality: the Copenhagen City Heart Study. *J Am Coll Cardiol*, 65(5), 411. doi: 10.1016/j.jacc.2014.11.023.
- Shave, R., Baggish, A., George, K., et al. (2010). Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. *J Am Coll Cardiol*, 3 (56), 169-176
- Sulis, S., Svabova, P. (2024). The variability of anthropometric and body composition parameters in middle-aged women associated with menopause and smoking. *Anthropological Review*, 1(87), 33-51. Doi: 10.18778/1898-6773.87.1.03
- 31. Valenzano, A. A., Vasco, P., D'Orsi, G., et al. (2025). Influence of Intermittent Fasting on Body Composition, Physical Performance, and the Orexinergic System in Postmenopausal Women: A Pilot Study. Nutrients, 7 (17), 1121. Doi: 10.3390/nu17071121
- Vecchiatto, B., Castro, T. L., Ferreira, N. J. R., Evangelista, F. S. (2025).
 Healthy adipose tissue after menopause: contribution of balanced diet and physical exercise. *Exploration of Endocrine and Metabolic Diseases*, 10, 14-24. Doi: 10.37349/eemd.2025.
- 33. World Health Organization. (2018). Noncommunicable diseases country profiles (17th ed.). World Health Organization.
- 34. Zagrodna, A., Książek, A., Słowińska-Lisowska, et al. (2023). Effects of running a marathon on sclerostin and parathyroid hormone concentration in males aged over 50. *Journal of Sports Sciences*, 41(8), 796-802. https://doi.org/10.1080/02640414.2023.2240618
- 35. Zhao, X., Liu, X., Wu, X., et al. (2023). Associations between changes of smartphone pedometer-assessed step counts and levels of obesityrelated breast cancer biomarkers in non-cancer women: A populationbased observational study. *Journal of Sports Sciences*, 41(10), 937-946. https://doi.org/10.1080/02640414.2023.2249754
- Zinner, C. (2022). Specific gender differences of HIIT in health sports on cardiovascular parameters and body composition. B&G Bewegungstherapie und Gesundheitssport, 38(4), 167–170. https://doi. org/10.1055/a-1871-0001

Надійшла до друку 15.09.2025

FEATURES OF POSTURAL STABILITY IN PHYSICALLY HEALTHY CHILDREN WITH SPECIAL EDUCATIONAL NEEDS ACCORDING TO THE RESULTS OF CERTAIN INSTRUMENTAL FIXATION

Shi Lei¹

Tymur Matsiyevych³

https://orcid.org/0009-0004-2211-6773

Yaroslav Kurivskyi²

https://orcid.org/0000-0003-4001-7803

https://orcid.org/0009-0008-7286-3397

¹College of Competitive Sports, Shandong Sport University, China ²⁻³Kamianets-Podilskyi Ivan Ohiienko National University, Ukraine

кореспондент-автор – Ya. Kurivskyi: opndf22.kurivskyi@kpnu.edu.ua

doi: 10.32626/2309-8082.2025-30(3).144-155

The article discusses data on the validity and reliability of the developed software and hardware complex for recording the results of 14-17-year-old students from the healthy population and those with special educational needs in the postural stability test. The aim of the study was to experimentally determine the compliance of the software and hardware complex, developed based on the latest electronics, with metrological requirements for recording the results of adolescents and young people from different nosological groups in the postural stability test. Materials and methods. The study involved 34 girls and 34 boys with special educational needs and 24 girls and 22 boys from the healthy population; their ages ranged from 14.5±0.4 to 15.1±0.3 years. The developed complex was used to record results in BESS, which enables the assessment of postural stability development in different population groups. The reliability and criterion validity of the developed complex and the traditional method of recording test results were determined. The data of girls and boys from the healthy population, as well as those with special educational needs due to diseases of the cardiovascular and nervous systems, were analyzed separately. Results. The experimental data showed a discrepancy in the values of reliability and validity when recording results in BESS traditionally and using the developed complex. Thus, in the first case, the reliability of girls and boys from the healthy population was average (rtt from 0.355 to 0.611 and from 0.342 to 0.617, respectively), and validity was predominantly low (rtt from 0.182 to 0.343, from 0.182 to 0.331). The use of the developed complex ensured a high level of reliability (in girls, it was characterized by rtt from 0.901 to 0.951, in boys, from 0.902 to 0.954) and average validity (rtt from 0.591 to 687 and from 0.601 to 0.687). Similar levels, with the exception of correlation coefficients, were observed for the reliability and validity of the results in girls with cardiovascular and nervous system diseases, as well as in boys. Conclusions. The use of girls aged 14-17 from a healthy population and with special educational needs due to diseases of the cardiovascular and nervous systems, as well as boys, was noted with practically the same values of validity and reliability. However, in all cases, the developed complex for recording results in BESS prevailed over the traditional (visual) method. Objective, accurate, and reliable information obtained from the developed complex can significantly increase the effectiveness of personal physical activity programs for improving postural stability in adolescents and young people.

Keywords: adolescents, young people, postural stability, testing, outcome assessment, reliability, validity.

Shi Lei, Ярослав Курівський, Тімур Мацієвич. Особливості постуральної стабільності у фізично здорових дітей та з особливими освітніми потребами за результатами спеціальної інструментальної фіксації

Анотація. У статті розглянуто дані про валідність та надійність розробленого software and hardware complex для фіксації результатів учнів 14-17 років здорової популяції та з особливими освітніми потребами у тесті на постуральну стабільність. Мета дослідження полягала в експериментальному визначенні відповідності метрологічним вимогам програмно-апаратного комплексу, розробленого на основі новітньої електроніки для фіксації результатів підлітків і молоді різних нозологічних груп у тесті на постуральну стабільність. Матеріал та методи. У дослідженні взяли участь 34 дівчинки. 34 хлопчика з особливими освітніми потребами та 24 дівчинки, 22 хлопчики здорової популяції; вік усіх був у межах від 14,5±0,4 до 15,1±0,3 років. Розроблений комплекс використовували для фіксації результатів у BESS, який дозволяє оцінювати у різних групах населення стан розвитку постуральної стабільності. Визначали надійність та критеріальну валідність розробленого комплексу та традиційного способу фіксації результатів у тесті. Аналізували окремо дані дівчаток і хлопчиків здорової популяції, а також із особливими освітніми потребами внаслідок захворювань серцево-судинної та нервової систем. Результати. Дані експерименту свідчили про розбіжність значень надійності, валідності у випадку фіксації результатів у BESS традиційно та з використанням розробленого комплексу. Так у першому випадку в дівчаток і хлопчиків зі здорової популяції надійність була середньою (rtt відповідно від 0.355 до 0.611, від 0.342 до 0.617), валідність – переважно низькою (rtt від 0.182 до 0.343, від 0.182 до 0.331). Використання розробленого комплексу забезпечило високий рівень надійності (у дівчаток її характеризували rtt від 0.901 до 0.951, у хлопчиків – від 0.902 до 0.954) та середній – валідності (rtt від 0.591 до 687 та від 0.601 до 0.687). Аналогічними рівнями, за винятком значень коефіцієнтів кореляції, відзначалася надійність і валідність фіксації результатів у дівчаток із захворюваннями серцево-судинної та нервової систем, а також хлопчиків. Висновки. Використання дівчатками 14-17 років зі здорової популяції та з особливими освітніми потребами внаслідок захворювань серцево-судинної і нервової систем, так само як і хлопчиками, відзначалося практично однаковими значеннями валідності й надійності. Але в усіх випадках розроблений комплекс фіксації результатів у BESS переважав традиційний (візуальний) спосіб. Об'єктивна, точна і надійна інформація, отримана від розробленого комплексу може суттєво підвищити дієвість персональних програм фізичної активності з поліпшення у підлітків і молоді постуральної стабільності.

Keywords: підлітки, молодь, постуральна стабільність, тестування, оцінювання результату, надійність, валідність.

Introduction

Postural stability is currently considered to be the body's ability to maintain and effectively counteract disturbances in balance and stability through the coordinated activity of the somatosensory (nerve-muscle) system, vestibular apparatus, vision, and proprioception [3; 23]. Other information [6; 17] allows us to characterize this human ability in more detail—this concept is used to describe how the central nervous system analyzes sensory information from other systems in order to produce an adequate motor response to maintain a controlled upright position. The main sensory systems involved in postural stability are the visual, vestibular, and somatosensory systems, and the key functional goals of postural control are postural orientation and balance. Postural orientation is responsible for controlling the state and tone of the body in relation to gravity, the supporting surface, the visual environment, and internal landmarks. Postural balance is the coordination of sensorimotor strategies to stabilize the body's center of mass during both involuntary and external stimuli [6; 9; 36].

Postural stability is studied primarily by specialists in physical education, children's sports, and physical therapy. The main reason for the increased attention to it is that this ability is very important in ensuring the normal functioning of an individual, regardless of age [5; 20; 37; 43]. First of all, this concerns the ability of an individual to perform various static and dynamic movements (sitting, standing, kneeling, moving on all fours, crawling, walking, running) with the ability to contract the appropriate muscles to maintain balance. It also refers to the ability to make small corrections in response to changes in position and movement without using compensatory movements [16; 26].

From the perspective of physical education theory, postural stability is a type of coordination, specifically the ability to maintain balance [1, p. 111]. At the same time, performing postural stability exercises by children aged 10-12 contributes to improving the results in the manifestation of other motor qualities, in particular speed, various types of general and a special type of coordination as balance [7].

From the perspective of physical therapy, postural stability is considered primarily in relation to brain function after a series of diseases. These include stroke [2], Parkinson's disease, multiple sclerosis, traumatic brain injury, military injuries, and sports-related concussions [10].

In this regard, the problem of recording the results of postural stability in children belonging to different nosological groups becomes relevant. To a large extent,

this concerns the tools that can be used to determine postural stability relatively quickly, reliably, and, most importantly, accurately [11; 44]. In particular, children are offered [22] to use the "KörperKoordinationstest für Kinder" test. According to other information [20], the BESS (balance error scoring system) test is universal, i.e., suitable for both children and adults. In addition, its other advantages include the speed of obtaining results, relative ease of use, and the use of inexpensive tools. However, there are also some drawbacks, one of the main ones being the recording of results [11; 27]. In particular, the test involves counting the errors made by the child in each of the three positions provided for in the test. Errors are determined by visual fixation and comparison with the test requirements. Therefore, there is a possibility of making a mistake when recording the result, since such an assessment is based on the subjective opinion of the person performing it [12; 21]. To be more specific, BESS involves recording the maintenance of correct body position when performing three different stances on each of two surfaces (hard and soft). At the same time, it is necessary to comply with the requirements specified in the protocol, in particular, the position of the arms and legs. The following are considered errors: moving the arms away from the iliac crests, opening the eyes, stumbling or falling, moving or bending the hips more than 30°, lifting the front of the foot or heel above the surface, or staying in a position other than the specified one for more than 5 seconds. In addition, there is a possibility of error when monitoring the time the child maintains a stable body position.

High-tech capabilities of the latest electronics can contribute to the successful solution of this problem [9]. To a certain extent, this is confirmed by empirical data on the effectiveness of electronic technologies in monitoring the results of physical activity [19]. In addition, the use of such technologies allows: correct and effective assessment of the results of various physical activity tasks; quick access to all information obtained during testing; and the solution of some other, but equally important tasks [18; 41].

Taking into account all of the above information, the need for research aimed at verifying the effectiveness of recording BESS results using an instrumental method was noted. That is, we are talking about a complex for determining the state of development of postural stability in children and young people [4]. The metrological effectiveness of its use in the practice of inclusive physical education was established by a special study [11]. With regard to adolescents with special educational needs and those who do not need them due to normal development, information on the state of postural stability development

in the latter is scarce [30], and in the former, it is completely absent.

Purpose of the research – to experimentally determine the compliance with metrological requirements of the software and hardware complex developed on the basis of the latest electronics for recording the results of adolescents and young people of different nosological groups in the postural stability test.

Materials and methods

Research methods. The methods chosen for the study corresponded to its purpose and objectives. At the theoretical level, these were methods of analysis and systematization. With their help, various sources of information were processed. At the empirical level, testing and methods of mathematical statistics were used. A systematic approach was used to organize the study. This involved several stages. In the first stage, we obtained as much complete, objective, and reliable information as possible about the state of the problem under study. In the second stage, we compared the test results obtained in each attempt and in the formed nosological group of adolescent children. The third stage involved summarizing the results of the comparison of the empirical data obtained. During the fourth stage, conclusions were drawn and the information obtained by us and other researchers was compared to confirm or refute the conclusions and assumptions made.

Study participants. Considering that the degree of authenticity of the test is directly related to the homogeneity of the sample, important characteristics of the girls and boys who participated in the study were taken into account when forming the sample. A total of 34 girls and 34 boys with special educational needs (SEN samples) were involved, of whom 20 and 22 had cardiovascular diseases, 14 and 12 had nervous system diseases, respectively. The sample of children without developmental abnormalities (main sample - MS) included 24 girls and 22 boys. The age of all children who participated in the study ranged from 14.5±0.4 to 15.1±0.3 years. The base for the study of SEN participants was a school in China called "BBSG" (Bilingual Benenden School Guangzhou). The base for the study of SEN participants was a sanatorium-resort facility in Ukraine, where children with certain diseases received the necessary services. All parents gave their consent for their children to participate in the study. The study was planned and carried out following the principles of bioethics set forth by the World Medical Association (WMA-2013) in the Helsinki Declaration "Ethical Principles of Medical Research Involving Humans" and UNESCO in the "General Declaration on Bioethics and Human Rights".

Test procedure. Testing took place in the morning, using the BESS test, which is most commonly used by foreign researchers. This test consists of a combination of three stances. The positions are as follows: in the double leg stance, in the single leg stance position, in the tandem stance (fig. 1).

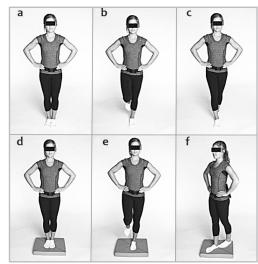


Fig. 1 Conditions for performing the stances included in the BESS on a hard surface ((a)–(c)) and a foam surface ((d)–(f)). Figure reprinted with permission from Ozinga et al. [30]

Each stance is performed with eyes closed for 20 seconds on different support surfaces, namely on the floor (hard surface) and on a foam mat (soft surface, dimensions – 100x100 mm or more) [20; 30]. If the test conditions are violated, points are awarded, in particular for opening the eyes, removing the hands from the hips, moving or bending the hip more than 30°, lifting the front of the foot or heel above the surface, or losing balance (stepping to one side, stumbling, falling, etc.). Therefore, a higher total score indicates a worse test result. The maximum number of errors for each stance is 10.

Research organization. The study was conducted in accordance with the principles of empirical research ethics. It was aimed at obtaining empirical facts, primarily the average result in three attempts to perform each stance. At the same time, the best result was taken into account. The necessary information was collected using two methods of recording results in BESS, namely, using the software and hardware complex (SHC) developed by us and traditionally (T). It was important to create the same conditions for all participants: before the start of testing, all children received the necessary instructions; the experimenter was thoroughly familiar with the testing methodology, namely, had the necessary skills to organize and implement this procedure and record the results.

Statistical analysis. The test results were processed using appropriate methods of mathematical statistics. For this purpose, SPSS version 22.0 (IBM Corporation) was

used to determine the arithmetic mean (Mean), standard deviation of the mean (SD), median (Me), and coefficient of variation (V). In addition, quantitative characteristics were determined to establish the reliability of the methods we used to record results in BESS and their criterion validity. In this case, taking into account the information provided by researchers [40], correlation analysis (r) was applied.

Results

The method we developed for recording results in BESS allows, in our opinion, for a more accurate and qualitative determination of the level of development of postural stability in adolescents. It was based on scientific knowledge about human balance control, namely, that it is a combined process involving somatosensory, visual, and vestibular systems [23]. Balance is considered within the framework of such a human motor quality as coordination and means the ability to maintain the body's center of gravity on a supporting surface [34].

Taking this into account, in order to record the results in BESS more accurately, a method was developed that involves the use of SHC (hereinafter referred to as the SHC method), which combines hardware and data processing algorithms. This complex made it possible to accurately analyze data, eliminate the subjective influence of the human factor on the result, and also allowed it to function in energy-saving mode. The basis of the software and hardware complex for recording BESS results is Force Sensitive Resistor piezoelectric pressure sensors, which are placed in a soft mat used during the test. The main function of the Force Sensitive Resistor is to continuously monitor body weight distribution to record any deviation, including displacement of the center of gravity and loss of balance, even minimal [33]. Another advantage of Force Sensitive Resistor sensors is their simplicity of operation, low power consumption, and ability to run on batteries due to their power consumption of only 5 volts.

To integrate several sensors into a single system, we used Arduino Mega, the latest version of the top-of-the-line microcontroller board. Thanks to its large number of input ports, it acts as a hub that collects data obtained by reading signals from all connected sensors [4]. Arduino Mega consists of a microcontroller with input/output elements and a Processing/Wiring environment that identifies changes in weight load after initial processing of signals from the Force Sensitive Resistor and System in Package (SiP). The latter is represented by a motion module (an improved version of MPU-9250) – another important component of the developed software and hardware complex. The module integrates a Digital Motion Processor (DMP) and a MotionFusion system for

detecting activity and calibration along 9 axes using a gyroscope and accelerometer. MotionFusion algorithms process information from all sensors and generate a complete set of data on any movements of the child's body that occur during the test. In other words, it tracks body tilts and angular displacements in different planes (forward-backward, left-right). The module is placed on the child's belt or shoes.

The SHC works as follows: while the child is performing the BESS, signals from the Force Sensitive Resistor sensors are sent to the Processing/Wiring hardware computing platform of the Arduino Mega microcontroller (fig. 2).

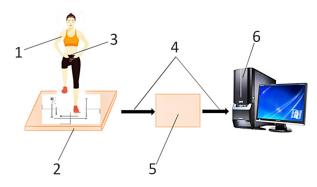


Fig. 2 Diagram of BESS results recording using a developed software and hardware complex for assessing the development of postural stability in children. Figure reprinted with permission from Blavt et al. [11]

Note. Labeled: 1 – child performing the test, 2 – Force Sensitive Resistor, 3 – MPU-9250 motion sensor module, 4 – infrared communication lines, 5 – Arduino Mega microcontroller hardware computing platform, 6 – personal computer (smartphone)

Signals from the DMP are also sent to it. Wireless modules, such as HC-05 (Bluetooth) or ESP32 (Wi-Fi), are used to transmit data in real time to a personal computer or smartphone screen. In conducting the experiment, we sought to determine the quality of the BESS results obtained using the T-method and the SHC (hereinafter referred to as the SHC-method). When analyzing the data obtained, we took into account information from test theory about the criterion validity and reliability of research tools [14].

MS samples. After recording the results for girls using each of the two methods, we found that the T-method in each case (three stands) was characterized by a low level of validity. Thus, performing stands on a hard surface provided the following correlation coefficient (rtt) values: stand on two legs -0.321, on one leg -0.211, tandem -0.343. A similar level was noted for the T-method of recording results in the same girls, but when performing on a soft surface. Thus, the rtt values were: standing on two legs -0.231, on one leg -0.182, tandem stance -0.198 (Table 1). In other words, all the values given were within the range of 0 to 0.3.

Table 1 – Sample Demographics (OB – girls, n = 24)

		BESS tasks and measurement results in the firm surface (number of errors)						
Statistical parameters	Double-leg	Double-legged stance		ged stance	Tandem stance			
parameters	Т	SHC	Т	SHC	Т	SHC		
Mean	0.28	0.10	3.82	2.23	1.02	0.31		
± SD	0.29	0.14	2.18	1.03	0.95	0.22		
Median	0	0	4.0	2.0	1.0	0		
V (%)	23.24	9.31	27.90	13.81	32.91	18.78		
rtt								
reliability	0.671	0.809	0.355	0.912	0.511	0.901		
validity	0.321	0.591	0.211	0.657	0.343	0.684		
	BESS tasks	and measurement	results in the foam	surface (number o	of errors)			
Mean	0.71	0.11	7.91	3.55	4.08	1.53		
± SD	0.52	0.16	2.51	1.27	1.79	0.27		
Median	1.0	0	8.0	3.5	4.0	1.5		
V (%)	28.11	12.15	31.74	10.11	31.22	12.14		
rtt								
reliability	0.466	0.915	0.411	0.951	0.427	0.918		
validity	0.231	0.618	0.182	0.687	0.198	0.667		

They showed a low correlation between the studied indicators, i.e., a low level of validity of the T-method of recording results in BESS [42]. The use of the SHC-method provided significantly higher validity than the T-method. Thus, when performing stands on a hard surface, the correlation coefficients ranged from 0.591 to 0.684, and on a soft surface, from 0.618 to 0.687. In other words, in all cases, the values of the coefficients confirmed the average level of validity of the SHC method of recording test results.

Another criterion used to determine the best method of recording results was reliability. The data for girls showed both a common trend and specific features. The trend was significantly higher coefficient values when using the SHC method of recording results than the T method. This was confirmed by the authenticity coefficient values (rtt), which were as follows when the test was performed on a hard surface: standing on two legs with the T-method - 0.671, SHC-method - 0.809, standing on one leg - 0.355 and 0.912, respectively, tandem stance - 0.511 and 0.901. In other words, the use of the T-method ensured average reliability of the test results, while the SHC-method ensured high reliability (see Table 1).

A similar result, except for the reliability coefficient values, was obtained when comparing the data of the same girls, but obtained after they performed the specified stands on a soft surface. A distinctive feature here was the even higher reliability of recording the result using the SHC method (rtt within 0.915-0.951) and lower

reliability using the T-method (rtt within 0.411-0.466) than in the previous case

In the sample of boys, the analysis of data on the validity and reliability of each method used to record results in BESS revealed certain trends and features. One of the trends was a significant discrepancy in the level of validity and reliability of the methods used. In particular, the validity of the T-method when assessing standing on two legs on a solid surface was rtt = 0.331, while recording the result using the SHC-method was rtt = 0.601 (Table 2).

Performing the same stances, but on a soft surface, showed similar trends and characteristics, with the exception of the correlation coefficients. They were as follows: for the T-method of fixing the result in a two-leg stance – rtt = 0.182, for the SHC-method – rtt = 0.618; in the one-leg stance – 0.198 and 0.687, respectively, in the tandem stance – 0.231 and 0.675. As can be seen, each pair of coefficient values was characterized by low and medium values, where the former characterized the validity of the T-method, and the latter – the SHC-method of recording results in the test.

Reliability was significantly higher when using the SHC method compared to the T-method. Thus, the correlation coefficients (rtt) when performing the test on a hard surface were as follows: balance on two legs with the T-method of recording - 0.617, with the SHC-method - 0.812, balance on one leg - 0.342 and 0.918, respectively, tandem balance - 0.482 and 0.902. In other words, when using the T-method, reliability was average, while when using the SHC-method, it was high (see Table 2).

Table 2 – Sample Demographics (OV – boys, n = 22)

6 1		BESS tasks and me	asurement results	in the firm surface	(number of errors)	
Statistical parameters	Double-leg	ged stance	Single-leg	ged stance	Tandem stance	
parameters	Т	SHC	Т	SHC	Т	SHC
Mean	0.28	0.10	3.91	2.03	1.22	0.29
± SD	0.61	0.13	2.41	1.12	0.98	0.18
Median	0	0	4.0	2.0	1.0	0
V (%)	26.25	8.73	28.65	14.02	31.64	16.17
rtt						
reliability	0.617	0.812	0.342	0.918	0.482	0.902
validity	0.331	0.601	0.223	0.679	0.324	0.684
	BESS tasks	and measurement	results in the foam	surface (number o	f errors)	
Mean	0.67	0.17	7.72	2.95	4.16	1.67
± SD	0.54	0.21	2.28	1.42	1.81	0.32
Me	0.5	0	7.0	2.0	4.0	1.0
V (%)	34.11	14.52	33.54	10.11	32.55	15.17
rtt						
reliability	0.466	0.915	0.411	0.954	0.427	0.931
validity	0.182	0.618	0.198	0.687	0.231	0.675

When recording the result in a one-leg stance, rtt was 0.223 and 0.679, respectively, and in a tandem stance, it was 0.324 and 0.684. In other words, in all cases, the validity of the T-method was low, while that of the SHC-method was average. A similar result, except for the correlation coefficient values, was obtained when comparing the data of the same boys, but obtained after they performed the specified stances on a soft surface. A distinctive feature here was that the correlation coefficients were even higher than in the previous case when using the SHC method. They ranged from rtt = 0.915 to rtt = 0.954 (high level), while the reliability of the T-method of recording

the result was described by values from rtt = 0.411 to rtt = 0.466, i.e., it was at an average level.

SEN samples. After recording the results of the girls using each method, it was found that the T-method is characterized by an average level of validity, with the exception of standing on one leg, where the level was low. At the same time, these levels were noted in the recording of results in girls with both cardiovascular and nervous system diseases. According to these samples, the rtt values were as follows: standing on two legs - 0.406 and 0.386, standing on one leg - 0.256 and 0.291, tandem stance - 0.348 and 0.351 (Tables 3 and 4).

Table 3 – Sample Demographics (SEN – girls with cardiovascular diseases, n = 20)

		BESS tasks and me	asurement results	in the firm surface	(number of errors)	
Statistical parameters	Double-leg	ged stance	Single-leg	ged stance	Tandem stance	
parameters	Т	SHC	Т	SHC	Т	SHC
Mean	0.97	0.21	4.35	2.71	1.93	0.35
± SD	0.49	0.19	2.02	1.16	1.09	0.27
Median	1.0	0	4.0	2.0	2.0	0
V (%)	40.11	10.24	31.92	18.21	24.14	16.44
rtt						
reliability	0.594	0.901	0.343	0.922	0.529	0.914
validity	0.406	0.623	0.256	0.609	0.351	0.677
	BESS tasks	and measurement	results in the foam	surface (number o	f errors)	
Mean	0.82	0.12	8.15	3.45	4.41	1.73
± SD	0.49	0.14	2.49	2.21	1.88	0.98
Me	1.0	0	8.0	3.5	4.0	1.5
V (%)	26.45	11.32	36.43	20.85	29.21	19.28
rtt						
reliability	0.488	0.911	0.423	0.922	0.421	0.927
validity	0.185	0.607	0.211	0.728	0.227	0.683

Table 4 – Sample Demographics (SEN – girls with nervous system diseases, n = 14)

	BESS tasks and measurement results in the firm surface (number of errors)						
Statistical parameters	Double-leg	ged stance	Single-leg	ged stance	Tandem stance		
parameters	Т	SHC	Т	SHC	Т	SHC	
Mean	1.11	0.37	7.11	3.32	2.41	0.49	
± SD	0.67	0.21	2.87	1.89	1.15	0.21	
Median	1.0	0	7.0	3.0	2.0	0	
V (%)	34.23	20.02	28.52	19.79	28.47	17.81	
rtt							
reliability	0.544	0.900	0.356	0.934	0.505	0.925	
validity	0.386	0.615	0.291	0.621	0.348	0.727	
	BESS tasks	and measurement	results in the foam	surface (number o	f errors)		
Mean	1.24	0.44	9.68	3.61	5.23	2.27	
± SD	0.58	0.24	2.51	2.19	1.89	1.97	
Median	1.5	0.5	9.0	3.5	5.0	2.0	
V (%)	28.71	15.83	32.93	18.37	31.44	15.32	
rtt							
reliability	0.469	0.909	0.423	0.922	0.427	0.907	
validity	0.215	0.659	0.212	0.741	0.224	0.663	

Another level of validity was noted in the T-method of recording test results on a soft surface. The same girls performing the test stands resulted in the following rtt values: standing on two legs – in the "cardiovascular system disease" sample, the value was 0.185, in the "nervous system disease" sample - 0.215; one-leg stand – 0.211 and 0.212, respectively; tandem stand – 0.227 and 0.224. All of the above values were in the range from 0 to 0.3, i.e., they reflected a low correlation between the studied indicators. In other words, the validity of the T-method of recording results in BESS was low.

A completely different result was obtained when analyzing data on the use of the SHC method of recording results in BESS. This was evidenced by the correlation coefficients (rtt) obtained during the determination of the validity of this method of recording results. Thus, when performing handstands on a hard surface, the coefficients in the sample of girls with cardiovascular diseases were within the range of 0.623-0.677, and in the sample of girls with nervous system diseases - 0.615-0.727 (see Tables 3 and 4). When performing the same handstands, but on a soft surface, the validity of the results was reflected in the following rtt values: in the sample of girls with cardiovascular diseases, within the range of 0.607-0.728, in the sample of girls with nervous system diseases -0.659-0.741. In other words, all the values were within the range of 0.601-0.7 and 0.701-0.9, which indicated, respectively, medium and high strength of correlation

between the studied indicators, i.e., at least an average level of validity of the T-method of recording the results of girls in BESS.

Analysis of the data according to the reliability criterion revealed certain trends and features of the process. The trend was significantly higher coefficients obtained when using the SHC method of recording test results than the T method. This was confirmed by the correlation coefficients (rtt), which were as follows when the test was performed on a hard surface: standing on two legs using the T-method - 0.671, SHC-method - 0.809, standing on one leg - 0.355 and 0.912, respectively, tandem stance - 0.511 and 0.901. In other words, when using the T-method, reliability corresponded to the average level, and when using the SHC-method, to the high level (see Tables 3 and 4).

A similar result, except for the reliability coefficient values, was obtained when comparing the data of the same girls, but after they performed the specified stands on a soft surface. A distinctive feature here was that the correlation coefficient values were even higher than in the previous case when the result was recorded using the SHC method (rtt within 0.915-0.951) and lower when recorded using the T method (rtt within 0.411-0.466).

The study of data obtained during testing of boys with diseases of the cardiovascular and nervous systems revealed trends and characteristics very similar to those found in girls (Tables 5 and 6).

Table 5 – Sample Demographics (SEN – boys with cardiovascular diseases, n = 22)

Statistical parameters		BESS tasks and measurement results in the firm surface (number of errors)							
	Double-legged stance		Single-leg	ged stance	Tandem stance				
parameters	Т	SHC	Т	SHC	Т	SHC			
Mean	0.72	0.15	4.58	2.13	1.91	0.31			
± SD	0.44	0.11	2.16	1.04	1.12	0.20			
Me	1.0	0	4.0	2.0	1.5	0			
V (%)	34.51	9.72	32.52	14.32	25.48	15.12			
rtt									
reliability	0.417	0.903	0.381	0.915	0.478	0.908			
validity	0.212 0.661		0.224	0.597	0.238	0.684			
	BESS tasks and measurement results in the foam surface (number of errors)								
Mean	0.79	0.79 0.16 8		3.45	3.45 4.39				
± SD	0.44	0.13	2.31	2.21	1.74	0.64			
Me	1.0	0	8.0	3.5	4.0	1.5			
V (%)	25.05	13.12	34.21	20.85	27.35	13.98			
rtt									
reliability	0.477	0.914	0.401	0.918	0.421	0.942			
validity	0.192	0.615	0.223	0.718	0.227	0.724			

Table 6 – Sample Demographics (SEN – boys with nervous system diseases, n = 12)

BESS tasks and measurement results in the firm surface (number of errors)									
Double-leg	ged stance	Single-leg	ged stance	Tandem stance					
Т	SHC	Т	SHC	Т	SHC				
0.98	0.32	7.22	3.21	2.36	0.41				
0.58	0.22	2.71	1.83	1.19	0.24				
0	0	7.0	3.0	2.0	0				
31.12	19.87	29.45	17.19	26.94	18.11				
rtt									
0.535	0.902	0.359	0.935	0.508	0.921				
0.389	0.629	0.301	0.621	0.334	0.731				
BESS tasks and measurement results in the foam surface (number of errors)									
1.08 0.24		9.44	3.43 5.03		2.04				
0.52	0.18	2.47	2.11	1.77	1.66				
1.0	0	9.0	3.0	5.0	2.0				
32.87	15.38	35.67	19.94	30.87	15.82				
rtt									
0.457	0.911	0.420	0.929	0.417	0.918				
0.221	0.664	0.215	0.732	0.212	0.667				
	Double-leg T 0.98 0.58 0 31.12 0.535 0.389 BESS tasks a 1.08 0.52 1.0 32.87	Double-legged stance T SHC 0.98 0.32 0.58 0.22 0 0 31.12 19.87 0.535 0.902 0.389 0.629 BESS tasks and measurement 1.08 0.24 0.52 0.18 1.0 0 32.87 15.38 0.457 0.911	Double-legged stance Single-legged T SHC T 0.98 0.32 7.22 0.58 0.22 2.71 0 0 7.0 31.12 19.87 29.45 0.535 0.902 0.359 0.389 0.629 0.301 BESS tasks and measurement results in the foam 1.08 0.24 9.44 0.52 0.18 2.47 1.0 0 9.0 32.87 15.38 35.67 0.457 0.911 0.420	Double-legged stance Single-legged stance T SHC T SHC 0.98 0.32 7.22 3.21 0.58 0.22 2.71 1.83 0 0 7.0 3.0 31.12 19.87 29.45 17.19 0.535 0.902 0.359 0.935 0.389 0.629 0.301 0.621 BESS tasks and measurement results in the foam surface (number of 1.08 0.24 9.44 3.43 0.52 0.18 2.47 2.11 1.0 0 9.0 3.0 32.87 15.38 35.67 19.94 0.457 0.911 0.420 0.929	Double-legged stance Single-legged stance Tanden T SHC T SHC T 0.98 0.32 7.22 3.21 2.36 0.58 0.22 2.71 1.83 1.19 0 0 7.0 3.0 2.0 31.12 19.87 29.45 17.19 26.94 0.535 0.902 0.359 0.935 0.508 0.389 0.629 0.301 0.621 0.334 BESS tasks and measurement results in the foam surface (number of errors) 1.08 0.24 9.44 3.43 5.03 0.52 0.18 2.47 2.11 1.77 1.0 0 9.0 3.0 5.0 32.87 15.38 35.67 19.94 30.87 0.457 0.911 0.420 0.929 0.417				

Specifically, we note that the validity of the T-method of recording the results of boys when performing tasks on a hard surface was at low and medium levels. This was evidenced by the correlation coefficients (rtt), which ranged from 0.212 to 0.238 (sample "cardiovascular system diseases") and 0.301 to 389 (sample "nervous system diseases"). When using the SHC method, the correlation coefficients ranged from 0.591 to 0.684 and 0.621 to 0.731, respectively. These values indicated that

in both samples, the validity of this method of recording results in BESS corresponded to the average level.

When the same boys performed similar tasks, but on a soft surface, the correlation coefficients obtained indicated low validity of the T method and high validity of the SHC method of recording results.

As for the reliability of the methods used to record results, it was not the same when the test was performed on a hard surface. The T-method provided an average

level of reliability in both samples of boys (rtt within 0.381-0.487 and 0.359-0.535), while the SHC method provided a high level (rtt within 0.903-0.915 and 0.902-0.935). When performing the test on a soft surface, the reliability was as follows: when using the T-method, average in both samples (rtt within 0.401-0.477 and 0.417-0.455), when using the SHC method, high (rtt within 0.914-0.942 and 0.911-0.929).

Discussion

The high-tech capabilities of modern electronics today make it possible to successfully solve various problems in physical therapy, physical education, and children's sports activities [9]. Some of the main ones are: correct and effective assessment of the results of solving various pedagogical and rehabilitation tasks; quick receipt of all information regarding test results; solving other, but also important tasks of monitoring various characteristics of the child [18; 19; 41]. It has been reported [28] that the use of technical means, namely portable sensors, ensures the objectivity of balance measurement. The results of our study are consistent with those reported and obtained by other researchers [9; 10] regarding the effectiveness of computerized programmable devices in achieving objectivity in assessing test results in general and various types of coordination in particular. In addition, taking into account information from specialized literature, we noted that our study corresponds to current trends in the modernization of systems for recording and evaluating the test results of children and young people used in pedagogy, primarily in physical education, physical therapy, and children's sports [13].

During the study, it is also important to take into account the fact that proposals for the use of tools based on the latest electronics require mandatory verification of compliance with metrological requirements [34]. First of all, we are talking about the provisions of test theory regarding authenticity, namely the validity and reliability of research tools [39]. These characteristics are extremely important because they ensure that the results of using a particular tool will be accurate, consistent, and reliable [14]. In this regard, it is noted [29] that determining validity and reliability are necessary steps in evaluating the tool that the researcher plans to use. In terms of our study, it is crucial to note that manually obtained balance assessments cannot be accurate. One of the main reasons is that most changes cannot be detected with the naked eye [32; 33].

A small number of studies have been devoted to examining the reliability of the traditional method of recording results in BESS, which has been demonstrated by middle and high school students [8], a healthy population of children aged 5-9, 10-13, adolescents and young people aged 14-18, 19-23 [30]. At the same time, information from

researchers [11; 34] indicates that the reliability of the overall assessment of BESS results by specialists ranges from low to medium. This was confirmed in our study, in particular, it was found that this result is characteristic not only for the healthy population of adolescents and young people but also for peers with special educational needs, although with certain peculiarities. The latter is partly confirmed by the results of C. M. A. L. Júnior et al [21] regarding the scientific validity of an already validated set of tests for assessing the motor coordination of wheelchair users.

In addition, the study expands the understanding of the importance of postural stability as the body's ability to maintain balance, effectively counteract its disruption, and ensure stability through the coordinated activity of the somatosensory system, vestibular apparatus, vision, and proprioception [3; 17; 23]. The data obtained can be used as a basis for developing personal physical activity programs aimed at solving the tasks of physical therapy and physical education for children and adolescents.

Conclusions

One of the current trends in physical education, physical therapy, and children's sports is the modernization of systems for recording and evaluating the test results of children and young people based on computerized programmable devices.

A software and hardware complex (SHC) has been developed, which is a software and hardware system for controlling the execution and recording of results in BESS. It is based on the integration of modern hardware and neural network technology, as well as algorithms for processing test results using application software.

The proposed complex allows real-time recording and processing of test results and obtaining summary information with a fairly high degree of objectivity, accuracy, and reliability. The correlation coefficients demonstrated a high degree of reliability and above-average (from rtt) validity of the proposed tool.

The use of the proposed SHC by girls and boys aged 14-17 from a healthy population and with special educational needs due to diseases of the cardiovascular and nervous systems led to practically the same validity and reliability in the application of the proposed SHC. However, in all cases, it prevailed over the traditional (visual) method of recording results in BESS.

Objective, accurate, and reliable information obtained using the proposed SHC can significantly increase the effectiveness of personal physical activity programs for improving coordination in adolescents and young people in general and postural stability in particular.

Conflict of interest. The authors declare the absence of any conflict of interest.

References

- Lyzogub, V. S., Kravets, A. O., Putilin, I. A., Chistovska, Yu. Yu. (2024), "Posturalna stiykist na stabilniy ta nestabilniy opori za riznoyi patolohiyi [Postural stability on stable and unstable support in various pathologies]. Bulletin of Cherkasy University. Biological Sciences Series, No. 1, 79-92. DOI: 10.31651/2076-5835-2018-1-2024-1-79-92 [in Ukraine]
- Iedynak, G. A., Mysiv, V. M., Yurchyshyn, Y. V. (2014), Fizychna kultura u zahalnoosvitnomu navchalnomu zakladi [Physical education in a general educational institution]. Ruta, Kamianets-Podilskyi. 248 p. [in Ukraine]
- 3. ledynak, G. A., Mytskan, B. M., Ostapyak, Z. M. (2012), "Reabilitatsiya pislya insul'tu: kompleksnyy pidkhid" [Rehabilitation after stroke: a comprehensive approach. *Bulletin of the Precarpathian National University. Physical Education, 15*, 115-126. [in Ukraine]
- Mykytyuk, Z. M., Blavt, O. Z., Stadnik, V. V., Tymkovych, R. I., Kurivskyi, Ya. A., Matsievych, T. O. (2025), Patent na korysnu model № 160389. Sposib otsinyuvannya posturalnoyi stabilnosti [Utility model patent No. 160389. Method for assessing postural stability]. Application filing date: 04.03.2025. Publication of information on state registration: 03.09.2025, Bulletin No. 36. [in Ukraine]
- Platonov, V. M. (2021), Suchasna systema sportyvnoho trenuvannya [Modern system of sports training]. First printing, Kyiv. 672 p. [in Ukraine]
- Posturalnyy kontrol u fizychniy terapiyi [Postural control in physical therapy]. URL: https://rehabprime.com/postural-control/ [in Ukraine]
- 7. Acar, H., & Eler, N. (2019). The Effect of Balance Exercises on Speed and Agility in Physical Education Lessons. *Universal J of Educational Research*, 7(1), 74-79, 2019. https://doi.org/i:10.13189/ujer.2019.070110
- Barlow, M., Schlabach, D., Peiffer, J., & Cook, C. (2011). Differences in change scores and the predictive validity of three commonly used measures following concussion in the middle school and high school aged population. *Int J Sports Phys Ther*, 6(3), 150-157.
- Blavt, O., Iedynak, G., Pereverzieva, S., Holub, V., & Melnyk, S. (2023). Increasing the Reliability of Test Control Using Information Technologies in Inclusive Physical Education. *Physical Education Theory and Methodology*, 23(4), 607-613. https://doi.org/10.17309/ tmfv.2023.4.16
- 10. Blavt, O., Iedynak, G., Galamanzhuk, L., Helzhynska, T., Nosko, Y., Kachurak, Y., Voloshyn, O., & Shabaga, S. (2024). Determining the Reliability of Software Electronic Engineering Tools in the Control of Vestibular Disorders in Inclusive Physical Education of Students. *Physical Education. Theory and Methodology, 24*(6), 952-960. https://doi.org/10.17309/tmfv.2024.6.13
- 11. Blavt, O., ledynak, G., Galamanzhuk, L., Helzhynska, T., Kachurak, Y., Mykhalska Y., Levandovska, L., & Tymkovych, R. (2025). Software and Hardware Control System for Implementing the Balance Error Scoring System. *Physical Education Theory and Methodology*, 25(3), 609-617. https://doi.org/10.17309/tmfv.2025.3.17
- 12. Bollela, V. R., Borges, M. C., & Troncon, L. E. A. (2018). Summative Assessment of Cognitive Skills: an Experience Involving Good Practices for Writing Multiple Choice Tests and Exam Composition. *Revista Brasileira de Educasco Mădica, 42*(4), 74-85. https://doi.org/10.1590/1981-52712015v42n4RB20160065
- Caccese, J.B., & Kaminski, T.W. (2016). Comparing Computer- Derived and Human-Observed Scores for the Balance Error Scoring System. J Sport Rehabil, 25(2), 133-6. https://doi.org/10.1123/jsr.2014-0281
- 14. Chaabouni, S., Methnani, R., Al Hadabi, B., Al Busafi, M., Al Kitani, M., Al Jadidi, K., Samozino, P., Moalla, W., & Gmada, N. (2022). A Simple Field Tapping Test for Evaluating Frequency Qualities of the Lower Limb Neuromuscular System in Soccer Players: A Validity and Reliability Study. *Int J Environ Res Public Health*, 19(7), 3792. https://doi.org/10.3390/ijerph19073792

Джерела та література

- Лизогуб В. С., Кравець А. О., Путілін І. А., Чистовська Ю. Ю. Постуральна стійкість на стабільній та нестабільній опорі за різної патології. Вісник Черкаського університету. Серія Біологічні науки. 2024. № 1. С. 79-92. DOI: 10.31651/2076-5835-2018-1-2024-1-79-92
- Єдинак Г. А., Мисів В. М., Юрчишин Ю. В. Фізична культура у загальноосвітньому навчальному закладі : навч. посібник. Кам'янець-Подільський : Рута, 2014. 248 с.
- 3. Єдинак Г. А., Мицкан Б. М., Остап'як З. М. Реабілітація після інсульту: комплексний підхід. *Вісник Прикарпатського нац. ун-ту. Фізична культура.* 2012. Вип. 15. С. 115-126.
- Микитюк З. М., Блавт О. З., Стадник В. В., Тимкович Р. І., Курівський Я. А., Мацієвич Т. О. Патент на корисну модель № 160389. Спосіб оцінювання постуральної стабільності. Дата подання заявки: 04.03.2025. Публікація відомостей про державну реєстрацію: 03.09.2025, Бюлетень № 36.
- 5. Платонов В. М. Сучасна система спортивного тренування. Київ: Перша друкарня, 2021. 672 с.
- 6. Постуральний контроль у фізичній терапії. URL: https://rehabprime.com/postural-control/
- Acar, H., & Eler, N. (2019). The Effect of Balance Exercises on Speed and Agility in Physical Education Lessons. *Universal J of Educational Research*, 7(1), 74-79, 2019. https://doi.org/i:10.13189/ ujer.2019.070110
- Barlow, M., Schlabach, D., Peiffer, J., & Cook, C. (2011). Differences in change scores and the predictive validity of three commonly used measures following concussion in the middle school and high school aged population. *Int J Sports Phys Ther*, 6(3), 150-157.
- Blavt, O., ledynak, G., Pereverzieva, S., Holub, V., & Melnyk, S. (2023). Increasing the Reliability of Test Control Using Information Technologies in Inclusive Physical Education. *Physical Education Theory and Methodology*, 23(4), 607-613. https://doi. org/10.17309/tmfv.2023.4.16
- 10. Blavt, O., ledynak, G., Galamanzhuk, L., Helzhynska, T., Nosko, Y., Kachurak, Y., Voloshyn, O., & Shabaga, S. (2024). Determining the Reliability of Software Electronic Engineering Tools in the Control of Vestibular Disorders in Inclusive Physical Education of Students. *Physical Education. Theory and Methodology, 24*(6), 952-960. https://doi.org/10.17309/tmfv.2024.6.13
- 11. Blavt, O., Iedynak, G., Galamanzhuk, L., Helzhynska, T., Kachurak, Y., Mykhalska Y., Levandovska, L., & Tymkovych, R. (2025). Software and Hardware Control System for Implementing the Balance Error Scoring System. *Physical Education Theory and Methodology*, 25(3), 609-617. https://doi.org/10.17309/tmfv.2025.3.17
- 12. Bollela, V. R., Borges, M. C., & Troncon, L. E. A. (2018). Summative Assessment of Cognitive Skills: an Experience Involving Good Practices for Writing Multiple Choice Tests and Exam Composition. *Revista Brasileira de Educaseo Mŭdica, 42*(4), 74-85. https://doi.org/10.1590/1981-52712015v42n4RB20160065
- Caccese, J.B., & Kaminski, T.W. (2016). Comparing Computer-Derived and Human-Observed Scores for the Balance Error Scoring System. J Sport Rehabil, 25(2), 133-6. https://doi.org/10.1123/ jsr.2014-0281
- 14. Chaabouni, S., Methnani, R., Al Hadabi, B., Al Busafi, M., Al Kitani, M., Al Jadidi, K., Samozino, P., Moalla, W., & Gmada, N. (2022). A Simple Field Tapping Test for Evaluating Frequency Qualities of the Lower Limb Neuromuscular System in Soccer Players: A Validity and Reliability Study. *Int J Environ Res Public Health*, 19(7), 3792. https://doi.org/10.3390/ijerph19073792

- 15. Davis, G. A., Iverson, G. L., Guskiewicz, K. M., Ptito, A., and Johnston, K. M. (2009). Contributions of neuroimaging, balance testing, electrophysiology, and blood markers to the assessment of sport-related concussion. *The British J of Sports Medicine*, 43(1), i36–i45.
- 16. Di Tore, P.A., Schiavo, R., & D'isanto, T. (2016). Physical education, motor control and motor learning: theoretical paradigms and teaching practices from kindergarten to high school. *J of Physical Education and Sport*, 16(4), 1293-1297. https://doi.org/i: 10.7752/jpes.2016.04205.
- 17. García-Soidán, J. L., Leirós-Rodríguez, R., Romo-Pérez, V., & García-Liñeira, J. (2020). Accelerometric Assessment of Postural Balance in Children: A Systematic Review. *Diagnostics (Basel)*, 11(1), 8. https://doi.org/i:10.3390/ diagnostics11010008.PMID:33375206
- Gogoi, H. (2019). The use of ICT in Sports and Physical Education.
 Advances in Physical Education and Sports Sciences, 1, 130. https://doi.org/10.22271/ed.book.445
- 19. Gupta, R. (2021). Information and Communication Technology in Physical Education. India: Friends Publications. URL: https://books. google.com.ua/books/about/Information_and_Communication_ Technology.html?id=vz0vEAAAQBAJ&redir_esc=y
- 20. Iverson, G. L., Koehle, M. S. Normative Data for the Balance Error Scoring System in Adults. *Rehabilitation Research & Practice*, Vol. 2013, Art. ID 846418. http://dx.doi.org/10.1155/2013/846418
- 21. Júnior, C. M. A. L., de Campos, S. F. F., Dantas, K. B. A., da Rocha Esch, T. R., Scudese, E., de Souza, D. M., Dantas, E., H., M. (2023). Reliability and objectivity of motor coordination assessments for wheelchair users. *Retos*, 48, 701-707. https://recyt.fecyt.es/index.php/retos/index
- 22. Kaioglou, V. (2021). Development of Balance in Children Participating in Different Recreational Physical Activities. – URL: https://www. academia.edu/65629137/Development_of_Balance_in_Children_ Participating_in_Different_Recreational_Physical_Activities
- 23. Lengkana, A. S., Rahman, A.A., Alif, M. N., Mulya, G., Priana, A., & Hermawa, D. B. (2020). Static and Dynamic Balance Learning in Primary School Students. *International J of Human Movement and Sports Sciences*, 8(6), 469-476. http://www.hrpub.org: 10.13189/saj.2020.080620
- Logan, S. W., Ross, S. M., Chee, K., Stodden, D. F., & Robinson,
 E. (2018). Fundamental motor skills: A systematic review of terminology. *J of sports sciences*, 36(7), 781-796.
- 25. Ma, J., Lander, N., Eyre, E., Barnett, L. M., Essiet, I. A., & Duncan, M. J. (2021). It's Not Just What You Do but the Way You Do It: A Systematic Review of Process Evaluation of Interventions to Improve Gross Motor Competence. Sports medicine (Auckland, N.Z.), 51(12), 2547–2569. https://doi.org/10.1007/s40279-021-01519-5
- Magill, R. A., & Anderson, D. (2017). Motor learning and control: Concepts and applications. 11th ed. London: McGraw-Hill International Edition.
- Mangum, L. C., Skibski, A., Devorski, L., Slater, L. (2023). Balance Error Scoring System Performance Differences in Figure Skaters Based on Discipline. *Int J Sports Phys Ther*, 18(4), 898-904. doi: 10.26603/001c.81598.
- 28. Napoli, A., Ward, C. R., Glass, S. M., Tucker, C., & Obeid, I. (2016). Automated assessment of postural stability system. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, USA, 6090-6093. https://doi. org/10.1109/EMBC.2016.7592118
- 29. Ng, K. L., & Samsudin, S. (2024). Determining the Validity and Reliability of ArtSci-S.P.D. Module On Year 5 Human Circulatory System. *Journal of Learning Theory and Methodology, 5*(3), 123-128. https://doi.org/10.17309/jltm.2024.5.3.05

- Davis, G. A., Iverson, G. L., Guskiewicz, K. M., Ptito, A., and Johnston,
 K. M. (2009). Contributions of neuroimaging, balance testing,
 electrophysiology, and blood markers to the assessment of sport-related concussion. *The British J of Sports Medicine*, 43(1), i36–i45.
- 16. Di Tore, P.A., Schiavo, R., & D'isanto, T. (2016). Physical education, motor control and motor learning: theoretical paradigms and teaching practices from kindergarten to high school. *J of Physical Education and Sport*, 16(4), 1293-1297. https://doi.org/i: 10.7752/jpes.2016.04205.
- García-Soidán, J. L., Leirós-Rodríguez, R., Romo-Pérez, V., & García-Liñeira, J. (2020). Accelerometric Assessment of Postural Balance in Children: A Systematic Review. *Diagnostics (Basel)*, 11(1), 8. https://doi.org/i:10.3390/ diagnostics11010008.PMID:33375206
- 18. Gogoi, H. (2019). The use of ICT in Sports and Physical Education. Advances in Physical Education and Sports Sciences, 1, 130. https://doi.org/10.22271/ed.book.445
- 19. Gupta, R. (2021). Information and Communication Technology in Physical Education. India: Friends Publications. URL: https://books. google.com.ua/books/about/Information_and_Communication_ Technology.html?id=vz0vEAAAQBAJ&redir_esc=y
- Iverson, G. L., Koehle, M. S. Normative Data for the Balance Error Scoring System in Adults. *Rehabilitation Research & Practice*, Vol. 2013, Art. ID 846418. http://dx.doi.org/10.1155/2013/846418
- 21. Júnior, C. M. A. L., de Campos, S. F. F., Dantas, K. B. A., da Rocha Esch, T. R., Scudese, E., de Souza, D. M., Dantas, E., H., M. (2023). Reliability and objectivity of motor coordination assessments for wheelchair users. *Retos*, 48, 701-707. https://recyt.fecyt.es/index.php/retos/index
- 22. Kaioglou, V. (2021). Development of Balance in Children Participating in Different Recreational Physical Activities. URL: https://www. academia.edu/65629137/Development_of_Balance_in_Children_ Participating_in_Different_Recreational_Physical_Activities
- 23. Lengkana, A. S., Rahman, A.A., Alif, M. N., Mulya, G., Priana, A., & Hermawa, D. B. (2020). Static and Dynamic Balance Learning in Primary School Students. *International J of Human Movement and Sports Sciences*, 8(6), 469-476. http://www.hrpub.org: 10.13189/saj.2020.080620
- 24. Logan, S. W., Ross, S. M., Chee, K., Stodden, D. F., & Robinson, L. E. (2018). Fundamental motor skills: A systematic review of terminology. *J of sports sciences*, *36*(7), 781-796.
- 25. Ma, J., Lander, N., Eyre, E., Barnett, L. M., Essiet, I. A., & Duncan, M. J. (2021). It's Not Just What You Do but the Way You Do It: A Systematic Review of Process Evaluation of Interventions to Improve Gross Motor Competence. Sports medicine (Auckland, N.Z.), 51(12), 2547–2569. https://doi.org/10.1007/s40279-021-01519-5
- 26. Magill, R. A., & Anderson, D. (2017). Motor learning and control: Concepts and applications. 11th ed. London: McGraw-Hill International Edition.
- 27. Mangum, L. C., Skibski, A., Devorski, L., Slater, L. (2023). Balance Error Scoring System Performance Differences in Figure Skaters Based on Discipline. *Int J Sports Phys Ther*, 18(4), 898-904. doi: 10.26603/001c.81598.
- 28. Napoli, A., Ward, C. R., Glass, S. M., Tucker, C., & Obeid, I. (2016). Automated assessment of postural stability system. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, USA, 6090-6093. https://doi. org/10.1109/EMBC.2016.7592118
- 29. Ng, K. L., & Samsudin, S. (2024). Determining the Validity and Reliability of ArtSci-S.P.D. Module On Year 5 Human Circulatory System. *Journal of Learning Theory and Methodology, 5*(3), 123-128. https://doi.org/10.17309/jltm.2024.5.3.05

- 30. Ozinga, S. J., Linder, S. M., Koop, M. M., Dey, T., Figler, R., Russman, A. N., So, R., Rosenthal, A. H., Cruickshank, J., Alberts, J. L. (2018). Normative Performance on the Balance Error Scoring System by Youth, High School, and Collegiate Athletes. *J Athl Train*, 53(7), 636-645. doi: 10.4085/1062-6050-129-17.
- Palencia, M. A. Z., & Gallón, O. L. H. (2022). Facilitadores en el deporte paralímpico: motivos de práctica deportiva en jugadores con discapacidad física y visual. *Retos*, 44, 27-33. https://doi. org10.47197/retos.v44i0.90277
- Prangley, A., Aggerholm, M., & Cinelli, M. (2017). Improvements in balance control in individuals with PCS detected following vestibular training: A case study. *Gait Posture*, 58, 229-231. https://doi. org/10.1016/j.gaitpost.2017.08.006
- Rochefort, C., Walters-Stewart, C., Aglipay, M., Barrowman, N., Zemek, R., & Sveistrup, H. (2017). Self-reported balance status is not a reliable indicator of balance performance in adolescents at onemonth post-concussion. *J Sci Med Sport, 20*(11), 970-975. https:// doi.org/10.1016/j.jsams.2017.04.008
- 34. Ross, J. D., Hoch, M. C., Malvasi, S. R., Cameron, K. L., & Roach, M. H. (2023). The Relationship Between Human-rated Errors and Tablet-based Postural Sway During the Balance Error Scoring System in Military Cadets. Sports Health, 15(3), 427-432. https://doi.org/10.1177/19417381221093566
- 35. Sa, B., Ezenwaka, C., Singh, K., Vuma, S., & Majumder, Md. A. (2019). Tutor assessment of PBL process: Does tutor variability affect objectivity and reliability? *BMC Medical Education*. *19*(1), 1-8. https://doi.org/10.1186/s12909-019-1508-z
- Sepehry, A.A., Schultz, I.Z., & Mallinson, A.I.N. (2024). Longridge Chronic Vestibular System Dysfunction After mTBI: Neuropsychology, Neuropsychiatry, Neuroscience and Treatment. *Psychol. Inj. and Law, 17*, 152-173. https://doi.org/10.1007/s12207-024-09506-7
- 37. Siedlaczek-Szwed, A., Galamanzhuk, L., Iedynak, G., Blavt, O. (2025). Instrumental fixation of lower limb movements coordination in preschool children. Bulletin of the Kamianets-Podilskyi Ivan Ohiienko National University. Physical education, Sport and Human Health, 2, 77-85. doi: 10.32626/2309-8082.2025-30(2).77-85
- 38. Tao, H., Husher, A., Schneider, Z., Strand, S., & Ness, B. (2020). The relationship between single leg balance and isometric ankle and hip strength in a healthy population. *Int J Sports Phys Ther*, *15*(5), 712-721. https://doi.org/10.26603/ijspt20200712.
- 39. Thomas, J. R., Nelson, J. K., & Silverman, S. J. (2012). *Mŭtodos de pesquisa em atividade fisica*. Artmed Editora.
- Turney, S. (2022). Pearson's correlation coefficient (r). Guidance and examples. – URL: https://www.scribbr.com/ statistics/pearsoncorrelation-coefficient/
- 41. Varga, A., & Révész, L. (2023). Impact of applying information and communication technology tools in physical education classes. *Informatics*, 10, 20. https://doi.org/10.3390/informatics10010020
- 42. Weir, J. P., Vincent, W. J. (2020). *Statistics in Kinesiology*. Champaign: Human kinetics.
- 43. Wood, R. (2018). Eurofit Fitness Test Battery for Adults. *Topend Sports Website*, first published January. URL: https://www.topendsports.com/testing/eurofit-adults.htm, Accessed 24 April 2024
- 44. ledynak, G., Prusik, K. (2013). Physical rehabilitation of children with orthopedic foot deformities in children with amendments the musculo-skeletal system. *J Of Health Sciences*, *38*, 27-36.

- 30. Ozinga, S. J., Linder, S. M., Koop, M. M., Dey, T., Figler, R., Russman, A. N., So, R., Rosenthal, A. H., Cruickshank, J., Alberts, J. L. (2018). Normative Performance on the Balance Error Scoring System by Youth, High School, and Collegiate Athletes. *J Athl Train*, 53(7), 636-645. doi: 10.4085/1062-6050-129-17.
- 31. Palencia, M. A. Z., & Gallón, O. L. H. (2022). Facilitadores en el deporte paralímpico: motivos de práctica deportiva en jugadores con discapacidad física y visual. *Retos*, 44, 27-33. https://doi.org10.47197/retos.v44i0.90277
- 32. Prangley, A., Aggerholm, M., & Cinelli, M. (2017). Improvements in balance control in individuals with PCS detected following vestibular training: A case study. *Gait Posture*, *58*, 229-231. https://doi.org/10.1016/j.gaitpost.2017.08.006
- 33. Rochefort, C., Walters-Stewart, C., Aglipay, M., Barrowman, N., Zemek, R., & Sveistrup, H. (2017). Self-reported balance status is not a reliable indicator of balance performance in adolescents at one-month post-concussion. *J Sci Med Sport, 20*(11), 970-975. https://doi.org/10.1016/j.jsams.2017.04.008
- 34. Ross, J. D., Hoch, M. C., Malvasi, S. R., Cameron, K. L., & Roach, M. H. (2023). The Relationship Between Human-rated Errors and Tablet-based Postural Sway During the Balance Error Scoring System in Military Cadets. Sports Health, 15(3), 427-432. https://doi.org/10.1177/19417381221093566
- 35. Sa, B., Ezenwaka, C., Singh, K., Vuma, S., & Majumder, Md. A. (2019). Tutor assessment of PBL process: Does tutor variability affect objectivity and reliability ? *BMC Medical Education*. *19*(1), 1-8. https://doi.org/10.1186/s12909-019-1508-z
- 36. Sepehry, A.A., Schultz, I.Z., & Mallinson, A.I.N. (2024). Longridge Chronic Vestibular System Dysfunction After mTBI: Neuropsychology, Neuropsychiatry, Neuroscience and Treatment. *Psychol. Inj. and Law, 17*, 152-173. https://doi.org/10.1007/s12207-024-09506-7
- 37. Siedlaczek-Szwed, A., Galamanzhuk, L., ledynak, G., Blavt, O. (2025). Instrumental fixation of lower limb movements coordination in preschool children. *Bulletin of the Kamianets-Podilskyi Ivan Ohiienko National University. Physical education, Sport and Human Health, 2,* 77-85. doi: 10.32626/2309-8082.2025-30(2).77-85
- 38. Tao, H., Husher, A., Schneider, Z., Strand, S., & Ness, B. (2020). The relationship between single leg balance and isometric ankle and hip strength in a healthy population. *Int J Sports Phys Ther*, *15*(5), 712–721. https://doi.org/10.26603/ijspt20200712.
- Thomas, J. R., Nelson, J. K., & Silverman, S. J. (2012). Mŭtodos de pesquisa em atividade fisica. Artmed Editora.
- 40. Turney, S. (2022). Pearson's correlation coefficient (r). Guidance and examples. URL: https://www.scribbr.com/ statistics/pearson-correlation-coefficient/
- 41. Varga, A., & Révész, L. (2023). Impact of applying information and communication technology tools in physical education classes. *Informatics*, 10, 20. https://doi.org/10.3390/informatics10010020
- 42. Weir, J. P., Vincent, W. J. (2020). Statistics in Kinesiology. Champaign: Human kinetics.
- 43. Wood, R. (2018). Eurofit Fitness Test Battery for Adults. *Topend Sports Website*, first published January. URL: https://www.topendsports.com/testing/eurofit-adults.htm, Accessed 24 April 2024
- ledynak, G., Prusik, K. (2013). Physical rehabilitation of children with orthopedic foot deformities in children with amendments the musculo-skeletal system. J Of Health Sciences, 38, 27-36.

ВИЯВЛЕННЯ СТРЕСОСТІЙКОСТІ ТА ІНТЕРЕСУ СТУДЕНТОК ДО ЗАНЯТЬ ПЛАВАННЯМ НА ЗАНЯТТЯХ ФІЗИЧНОЇ КУЛЬТУРИ

Олена Клюс¹

Олександр Скавронський³ https://orcid.org/0000-0002-4960-5647

https://orcid.org/0000-0003-4919-5323

Ольга Погорецька²

https://orcid.org/0009-0007-4373-9306

^{1,3} Кам'янець-Подільський національний університет імені Івана Огієнка, м. Кам'янець-Подільський, Україна ²ВСП Кам'янець-Подільський фаховий коледж НРЗВО «Кам'янець-Подільський державний інститут», Україна

кореспондент-автор – О. Клюс: alenakamp@gmail.com

doi: 10.32626/2309-8082.2025-30(3).156-165

Актуальність дослідження визначається сучасними соціальноосвітніми викликами, зокрема зниженням рівня рухової активності студентів, високим рівнем стресових навантажень та недостатнім формуванням навичок саморегуляції, що негативно впливають на фізичний, психоемоційний та соціальний стан молоді. У сучасних умовах воєнного стану, підвищеної психоемоційної напруги та обмежених ресурсів для організації фізичної активності проблема підтримки здоров'я студентів набуває особливої важливості. $\mathit{Mema}\ \mathit{docnid}$ ження – ε виявлення рівня стресостійкості здобувачів вищої освіти, визначення їхнього інтересу до занять плаванням під час занять з фізичної культури та з'ясування чинників, що впливають на формування мотивації до цього виду фізичної активності. Методи дослідження. Для одержання необхідних даних, як визначальної умови досягнення такої мети, було використано комплекс адекватних методів дослідження. Із таких, що реалізовувалися під час дослідження на емпіричному рівні, були письмове опитування (з використанням розробленої нами анкети), а також анкетне опитування для виявлення стресостійкості та методи математичної статистики. Під час опрацювання різних джерел інформації було використано метод аналізу, систематизації, узагальнення, теоретичного моделювання. Участь у дослідженні взяли 228 здобувачів вищої освіти першого та другого років навчання жіночої статі, віком 17,8 \pm 0,5 року. Усі вони належали до основної медичної групи. Результати дослідження показали, що більшість респондентів позитивно ставляться до занять фізичною культурою, однак фактична активність у плаванні залишається низькою. Основними мотивами для занять є покращення здоров'я, підвищення фізичної форми та отримання позитивного емоційного ефекту, тоді як головними перешкодами виступають нестача часу, страх води, відсутність належних умов для занять, недостатній рівень навичок та обмежений доступ до басейнів. Також виявили, що понад 79 % студенток перебувають у стані підвищеного стресу різного ступеня, що свідчить про доцільність використання плавання як ефективного засобу психофізіологічної регуляції та розвитку адаптаційних резервів організму. Висновки отримані дані підкреслюють необхідність впровадження комплексних програм, спрямованих на формування мотивації до регулярних занять плаванням, підвищення рівня фізичної культури, розвитку стресостійкості та навичок саморегуляції студентів. Результати дослідження також демонструють важливість інтеграції практичних та теоретичних компонентів навчання з фізичної культури, що дозволяє підвищити зацікавленість студенток у заняттях, сформувати усвідомлене ставлення до власного здоров'я та забезпечити комплексний підхід до фізичної та психоемоційної реабілітації молоді в умовах сучасних соціально-освітніх викликів.

Ключові слова: стресостійкість, плавання, фізична культура, мотивація, студенти.

Olena Klius, Olha Pohoretska, Oleksandr Skavronskyi. Assessing Stress Resilience and Motivation of Female Students for Swimming in Physical Education Classes

Abstract. The relevance of the study is determined by current socio-educational challenges, including the decline in students' physical activity, high levels of stress, and insufficient development of self-regulation skills, which negatively affect the physical, psycho-emotional, and social well-being of young people. Under the conditions of martial law, increased psychological tension, and limited resources for organizing physical activity, the issue of maintaining students' health becomes particularly important. Objective: The purpose of the study was to determine the level of stress resistance among higher education students, to assess their interest in swimming during physical education classes, and to identify the factors influencing motivation for this type of physical activity. Research methods. To achieve this goal, a set of appropriate research methods was used. At the empirical level, these included a written survey (based on a specially developed questionnaire), a questionnaire to assess stress resistance, and methods of mathematical statistics. During the analysis of various sources of information, methods of analysis, systematization, generalization, and theoretical modeling were applied. The study included 228 female first- and second-year higher education students, with a mean age of 17.8 \pm 0.5 years. All participants were classified within the main medical group. Results: The findings showed that most respondents have a positive attitude toward physical education, though actual participation in swimming remains low. The main motives for participation include improving health, increasing physical fitness, and gaining positive emotional effects, while the main obstacles are lack of time, fear of water, inadequate facilities, insufficient skills, and limited access to swimming pools. It was also found that more than 79 % of students experience elevated stress levels of varying degrees, indicating the feasibility of using swimming as an effective means of psychophysiological regulation and development of the body's adaptive reserves. The obtained results highlight the necessity of implementing comprehensive programs aimed at fostering motivation for regular swimming, enhancing physical culture, developing stress resistance, and improving students' self-regulation skills. Conclusions: The study also demonstrates the importance of integrating practical and theoretical components in physical education, which helps increase students' engagement, develop a conscious attitude toward personal health, and ensure a holistic approach to the physical and psycho-emotional rehabilitation of young people in the context of modern socio-educational challenges.

Keywords: stress resilience, swimming, physical education, motivation, higher education students.

Вступ

Проблема формування інтересу до занять плаванням у процесі фізичної культури є надзвичайно актуальною в умовах сучасних соціальних та освітніх викликів [10; 16]. Спостерігається стійка тенденція до зниження рівня рухової активності серед здобувачів освіти, що негативно впливає на їх фізичний розвиток та психоемоційний стан [2; 3; 15; 17; 20]. Особливої актуальності ця проблема набуває в умовах воєнного стану, високого рівня стресових навантажень [1; 5; 8], недостатнього фінансування освітньої сфери та зростання орієнтації молоді на матеріальні цінності. У зв'язку з цим питання збереження та зміцнення здоров'я молодого покоління стає пріоритетним завданням сучасної фізичної культури та освіти.

Плавання є одним із найефективніших видів рухової діяльності, оскільки сприяє гармонійному розвитку організму, підвищенню витривалості, покращенню психоемоційного стану та профілактиці захворювань [3; 6; 14; 19; 22; 25; 28; 29]. Формування стійкого інтересу до цього виду спорту у здобувачів освіти дозволить не лише підвищити рівень їхньої фізичної культури, а й сприятиме формуванню здорового способу життя, активної життєвої позиції та стресостійкості.

Отже, актуальність проблеми полягає у необхідності пошуку ефективних шляхів підвищення зацікавленості здобувачів до занять плаванням, що стане вагомим внеском у вирішення завдань фізичного виховання в сучасних соціально-економічних умовах.

Метою дослідження є виявлення рівня стресостійкості здобувачів вищої освіти, визначення їхнього інтересу до занять плаванням під час занять з фізичної культури та з'ясування чинників, що впливають на формування мотивації до цього виду фізичної активності.

Матеріал та методи дослідження

Методологічна основа дослідження охоплювала теоретичний і емпіричний рівні. На теоретичному рівні застосовувалися загальнонаукові методи — аналіз, узагальнення та систематизацію літературних і документальних джерел, добір яких здійснювався з використанням критичного підходу та баз даних Scopus, SPORT Discus, Web of Science, Google Scholar is використанням релевантних ключових слів, комбінацій та абревіатур. У процесі відбору враховувалися такі аспекти: мотивація освітньої діяльності, сучасні тенденції модернізації змісту та організації рухової активності здобувачів закладів вищої освіти, а також хронологічна актуальність інформації. Додатково здійснювався аналіз списків літератури у відібраних наукових статтях, навчальних посібниках та документальних джерелах. На основі цього було сформовано список із понад 60 джерел, з яких після критичного опрацювання залишено 29.

Під час проведення дослідження на емпіричному рівні застосовувалися адекватні методи, що належали

до різних груп. Зокрема, серед педагогічних було використано метод експерименту (констатувального характеру); серед соціологічних — письмове опитування із застосуванням спеціально розробленої анкети, а також тестове опитування на визначення рівня стресостійкості за визначеною методикою у наукових джерелах [8; 9]; серед методів математичної статистики у дослідженні було використано ті, що забезпечували визначення основних одномірних статистичних показників.

На першому етапі здійснювалося визначення абсолютних та відносних частот (кількості й відсоткового співвідношення відповідей) респондентів за кожним питанням анкети, що дало змогу з'ясувати розподіл відповідей і встановити частку осіб, які обрали певні варіанти, що містили бальні оцінки (зокрема ступінь уподобання видів фізичної активності), було проведено розрахунок основних одномірних статистичних характеристик: середнього арифметичного (\bar{x}) , медіани (Me), моди (Mo), мінімального (Min) і максимального (Мах) значень, середнього квадратичного відхилення (S), стандартної помилки середнього (m), коефіцієнта варіації (V, %) та частоти моди (FMo). Для якісних ознак здійснювався частотний і відсотковий аналіз, що дозволив узагальнити результати анкетування. Усі обчислення виконано в програмному середовищі Microsoft Excel 2021 (пакет Data Analysis).

Організація дослідженя. Дослідження проведено на базі Кам'янець-Подільського національного університету імені Івана Огієнка за участю 228 здобувачів вищої освіти першого та другого років навчання жіночої статі, віком 17,8 ± 0,5 року. Усі вони належали до основної медичної групи. Опитування здійснювалося у формі анонімного анкетування із використанням онлайн-платформи Google Forms. Варіанти відповідей були структуровані у вигляді закритих, рейтингових та комбінованих питань. Аналіз отриманих даних здійснювався за частотою вибору респондентами однакових варіантів відповідей, а також із застосуванням кількісних показників для оцінки інтересу до занять плаванням.

Анкетування проводилося відповідно до зазначених методичних рекомендацій [12], також із урахуванням особливостей респондентського контингенту. Концептуальною основою опитування було вивчення ставлення здобувачів до занять, їхнього інтересу до плавання, а також виявлення основних чинників, що формують мотивацію до занять плаванням у процесі фізичного виховання у закладах вищої освіти.

Анкета містила 11 питань із варіантами відповідей (табл. 1). Було проаналізовано частоту вибору респондентками однакових варіантів відповідей, що дозволяє оцінити їхні переваги та виявити тенденції в уподобаннях.

Таблиця 1 – Перелік питань анкети «Дослідження інтересу, ставлення та мотивації студентів до занять плаванням»

Nº	Зміст питання	Варіант відповідей				
1	Чи подобаються Вам заняття фізичною культурою?	- Так/ні /не знаю				
2	Які види рухових вправ у змісті фізичної культури Вам найбільше подобається виконувати? Розташуйте їх за ступенем уподобання — від 7 балів (найбільше подобається) до 1 бала (найменше подобається), проставивши відповідну оцінку навпроти кожного виду рухової активності	- Легка атлетика - Ігрові види спорту (футбол, волейбол, баскетбол тощо) - Гімнастика та фітнес - Плавання - Туризм/ активний відпочинок - Йога, пілатес - Силові тренування - Інше (вкажіть):				
3	Чи вмієте Ви плавати?	- Так, добре - Трохи вмію - Не вмію, але хочу навчитися - Не вмію і не маю бажання навчатись				
4	Ви знаєте вправи з плавання що проводяться на суші	- Так /ні				
5	Як часто Ви займаєтесь плаванням (якщо вмієте)?	- Регулярно (1—2 рази на тиждень і більше) - Час від часу (кілька разів на місяць) - Дуже рідко (1—2 рази на рік) - Ніколи				
6	Які види плавання Ви хотіли б вивчити або вдосконалити? (можна обрати кілька варіантів)	- Кроль на грудях - Кроль на спині - Брас - Батерфляй - Аквааеробіка (рух під музику у воді) - Вправи у воді для розслаблення / реабілітації - Вправи у воді для зміцнення м'язів та схуднення - гри у воді (водне поло, естафети) - Плавання під водою / затримка дихання - Інше (вкажіть):				
7	Які мотиви для занять плаванням є для Вас найбільш важливими? (можна обрати декілька)	- Поліпшення здоров'я - Розвиток фізичної форми - Отримання задоволення / відпочинок - Подолання страху води - Спілкування з друзями - Підготовка до змагань - Інше (вкажіть):				
8	Що заважає Вам регулярно займатися плаванням? (можна обрати кілька варіантів)	- Брак часу - Висока вартість відвідування басейну - Відсутність умов (близького басейну, транспорту тощо) - Невміння плавати / страх води - Відсутність компанії - Брак мотивації				
9	Чи хотіли б Ви поглибити свої теоретичні знання з плавання? Якщо так — оберіть теми, які Вас найбільше цікавлять (можна вибрати кілька варіантів). Якщо ні — зробіть відповідну позначку	- Так /ні - Тема Правила безпеки на воді - Історія та розвиток плавання як виду спорту - Теорія техніки різних стилів плавання - Вплив плавання на здоров'я та фізичний розвиток - Підготовка до змагань (тактика, правила) - Інше (вкажіть):				
10	Чи хотіли б Ви брати участь у змаганнях з плавання або інших видів спорту?	-Так /ні				
11	Якщо ні, то чому? (можна обрати кілька варіантів)	- Недостатній рівень підготовки - Немає бажання змагатися - Брак часу - Невпевненість у своїх силах / страх - Відсутність мотивації або підтримки - Інше (вкажіть):				

Вивчення рівня стресостійкості здійснювалося за допомогою кількісного емпіричного опитування (Google Forms). Для вимірювання використовувався «Тест на визначення рівня стресу», що складається з трьох розділів, які відображають різні групи ознак стресу. Процедура тестування передбачала визначення здобувачем наявності у себе певних ознак.

Зокрема, за наявності певних інтелектуальних, поведінкових ознак (це визначає здобувач) кожну оцінювали балом «1». За наявності певних емоційних ознак їх оцінюють балом «1.5», а фізіологічних ознак — балом «2». Наприкінці тесту треба підсумувати всі

набрані бали, щоб визначити рівень стресу відповідно до шкали розподілу балів. Максимальна сума балів може бути 66.

Шкала оцінки і характеристика:

- 1) 0-5 балів відсутність стресу.
- 2) 6-12 балів помірний стрес.
- 3) 13-24 балів сильний стрес.
- 4) 25-40 балів дуже сильний стрес, потрібна допомога психолога або психотерапевта.
- 5) 40 балів найбільш небезпечна стадія стресу виснаження запасів адаптаційної енергії

Ознаки стресу та відповідні стани узагальнено у таблиці 2.

Таблиця 2 - Ознаки стресу та пов'язані з ними стани

Інтелектуальні ознаки	Інтелектуальні ознаки Поведінкові ознаки		Фізіологічні симптоми		
1. Негативні думки 1. Зниження апетиту або		1. Занепокоєння,	1. Частий біль у різних ділянках		
2. Неможливість	переїдання	підвищена тривожність	тіла, головні болі		
зосередження	2. Часті помилки під час	2. Підозрілість	2. Підвищення або зниження тиску		
3. Погіршення пам'яті	виконання дій	3. Поганий настрій	3. Прискорений або неритмічний		
4. Думання про проблеми	3. Дуже швидка або навпаки	4. Часта туга, депресія	пульс		
5. Відсутність концентрації	сповільнена мова	5. Дратівливість, гнів	4. Порушення травлення		
уваги	4. Тремтіння голосу	6. Низька лабільність,	(закреп, діарея, підвищене		
6. Неможливість ухвалити рі-	5. Конфліктування на роботі	байдужість	газоутворення)		
шення, складність вибору	або в сім'ї	7. Недоречний гумор	5. Порушення ритму дихання		
7. Порушення сну	6. Нестача часу	8. Невпевненість у собі	6. Напруженість у м'язовій системі		
8. Часті помилки та	7. Невстигання, зволікання	9. Незадоволення від життя	7. Утомлюваність		
неточності	8. Немотивація до зовнінього	10. Відчуженість, самотність	8. Алергія чи інші шкірні висипи		
9. Неактивність, зволікання	вигляду, неохайність	11. Брак інтересу до життя	9. Пітливість		
10. Порушення логіки,	10. Порушення логіки, 9. Непродуктивність діяльності		10. Збільшення або зменшення		
алогічне мислення	11. Порушення сну/безсоння	чуття провини або невдо-	ваги тіла		
11. Поквапні рішення	12. Часте куріння та вживання	волення собою чи своєю	11. Зниження імунітету		
12. Зменшення «поля зору»	алкоголю	роботою	12.Часте знедужання		

Результати дослідження

У результаті проведеного письмового опитування здобувачів вищої освіти було встановлено, що більшість опитаних позитивно ставляться до занять з фізичної культури. Зокрема, 65 % (150 осіб) зазначили, що їм

подобаються такі заняття, тоді як 32 % (72 особи) не визначилися зі своєю позицією.

Подальший аналіз відповідей дав змогу визначити вподобання здобувачів щодо змісту занять з фізичної культури (табл. 3).

Таблиця 3— Статистичні характеристики вподобань здобувачів освіти щодо різних видів занять з фізичної виховання, n = 228

	Χ	Md	Мо	fMo	Min	Max	m	S	V
Легка атлетика	4.38	4	4.0	105	1	6	0.07	1.16	26.66
Ігрові види спорту	6.92	7	7.0	210	6	7	0.01	0.27	3.90
Гімнастика та фітнес	3.68	4	4.0	87	1	6	0.07	1.13	30.74
Плавання	4.24	5	5.0	128	1	6	0.07	1.19	28.23
Туризм	4.85	6	6.0	140	1	7	0.13	1.98	40.97
Йога	1.91	2	1.0	94	1	5	0.06	0.92	48.62
Силовий фітнес	2.11	2	2.0	114	1	5	0.08	1.31	62.08

Згідно з отриманими результатами, найбільш цікавими для більшості опитаних здобувачок освіти виявили ігрові види спорту — 92 % (210 осіб), які оцінили цей вид діяльності найвищим балом — 7. Це підтверджується також найвищими статистичними показниками: середнє арифметичне значення (\bar{x}) — 6.92, медіана (Md) — 7, мода (Mo) — 7, а коефіцієнт варіації (V) = 3.9 %, що свідчить про високу стабільність і одностайність уподобань респонденток.

Вправи, пов'язані з туризмом, посіли друге місце за рівнем зацікавленості — 61% (140 осіб) оцінили їх у 6 балів. Середнє арифметичне значення (\bar{x}) — 4.85 бала, медіана (Md) — 6, мода (Mo) — 6. Високе стандартне відхилення (S=1.98) і коефіцієнт варіації (V=40.97%) свідчать про значну різнорідність поглядів: частина здобувачів надає цим видам високу оцінку, а інша — нижчу.

Плавання характеризується помірно високим рівнем зацікавленості — 51 % (128 осіб) оцінили його у 5 балів. Середнє арифметичне значення (\bar{x}) — 4.24, медіана (Md) — 5, коефіцієнт варіації (V) = 28.23 %, що вказує на помірну варіативність інтересів.

Легка атлетика викликала середній рівень зацікавленості — 49 % (113 осіб) поставили 4 бали. Середнє арифметичне значення (\bar{x}) — 4.38, коефіцієнт варіації (V) = 26.66 %, що свідчить про відносно рівномірний розподіл думок серед респонденток.

Гімнастика та фітнес отримали помірний рівень інтересу — 26 % (60 осіб) оцінили цей вид у 3 бали. Середнє арифметичне значення (\bar{x}) — 3.68, коефіцієнт варіації (V) — 30.74 %, що вказує на певну невизначеність у ставленні здобувачок до цих видів рухової активності.

Силовий фітнес отримав низькі оцінки за рівнем зацікавленості — 50% (114 осіб) поставили 2 бали. Середнє арифметичне значення (\bar{x}) — 2.11, коефіцієнт варіації (V) = 62.08%, що засвідчує значну варіативність інтересів: частина здобувачок проявляє інтерес до силових вправ, тоді як інша не виявляє зацікавленості.

Найнижчий рівень інтересу зафіксовано щодо занять йогою — 41 % (79 осіб) поставили 1 бал. Середнє арифметичне значення (\bar{x}) — 1.91, коефіцієнт варіації (V) — 48.62 %, що характеризує низьку зацікавленість і значне розсіювання оцінок

Для визначення рівня рухових навичок у плаванні здобувачкам освіти було поставлено запитання: «Чи вмієте Ви плавати?». Згідно з отриманими результатами, 35 % респонденток (81 особа) вважають, що володіють цією навичкою частково, тоді як лише 15 % (36 осіб) повідомили про добре володіння навичкою плавання

Крім того, встановлено, що 25 % (57 осіб) хотіли б навчитися плавати, тоді як 10 % (24 особи) не вміють і не мають бажання навчатися. На уточнювальне запитання

щодо рівня знань у сфері плавання «Чи знаєте Ви види вправ, які можна виконувати на суші?» — усі респондентки (100 %, 228 осіб) відповіли, що не знають таких вправ.

Подальший аналіз показав, що 57 % (132 особи) плавають дуже рідко — 1-2 рази на рік, 36 % (83 особи) взагалі не плавають, і лише 6 % (13 осіб) плавають час від часу — кілька разів на місяць.

Для з'ясування інтересу здобувачок освіти до вивчення або удосконалення пріоритетних видів плавання було поставлено запитання: «Які види плавання Ви хотіли б вивчати або вдосконалювати?». У результаті отримано такі дані: 65 % (150 осіб) виявили бажання виконувати вправи у воді для розслаблення та реабілітації; 34 % (78 осіб) — вправи у воді для зміцнення м'язів і схуднення. Трохи менше респонденток — 28 % (66 осіб) — зазначили, що бажають брати участь у спортивних іграх на воді (водне поло, естафети). Крім того, однакова кількість здобувачок виявила інтерес до аквааеробіки — 13 % (30 осіб) — та плавання стилем брас — 13 % (30 осіб). Ще 10 % (24 особи) зазначили, що хотіли б удосконалювати техніку плавання кролем на спині.

Для виявлення мотивів, які спонукають здобувачок освіти займатися плаванням, було отримано такі результати: 60 % (138 осіб) зазначили, що основним мотивом є поліпшення здоров'я; 47 % (108 осіб) займаються плаванням для отримання задоволення; 26 % (60 осіб) — з метою подолання страху води. Трохи менше респонденток — 18 % (42 особи) — зазначили, що займаються плаванням з метою спілкування із друзями.

Для визначення чинників, які перешкоджають здобувачкам освіти займатися плаванням, було поставлено запитання: «Що заважає Вам регулярно займатися плаванням?». Результати показали, що найбільш поширеними перешкодами є брак часу — 39 % (9 осіб), відсутність відповідних умов — 36 % (84 особи) та страх води — 30 % (70 осіб). Крім того, 31 % (72 особи) зазначили невміння плавати, а трохи менше — брак мотивації — 26 % (60 осіб). Також 18 % (42 особи) відзначили відсутність компанії для занять, а 15 % (36 осіб) — високу вартість відвідування басейну.

Наступним питанням було з'ясовування, чи мають здобувачки освіти інтерес до теоретичної підготовки з плавання. Респонденткам поставлено запитання: «Чи хотіли б ви поглибити свої теоретичні знання з плавання?». Отримані результати свідчать, що більшість опитаних не мають бажання займатися теоретичною підготовкою — 78 % (150 осіб) відповіли «ні», і лише 21 % (48 осіб) зазначили «так». Серед тих, хто виявив інтерес до теоретичної підготовки, 14 % (32 особи) хотіли б вивчати тему «Вплив плавання на здоров'я». Майже

однаково розподілилися інтереси до тем «Правила безпеки на воді» — 10% (24 особи), менш популярними виявилися теми «Історія та розвиток плавання як виду спорту» — 3% (8 осіб) та «Теорія техніки різних стилів плавання» — 2% (6 осіб).

Для визначення ставлення здобувачок освіти до проведення змагань з плавання було поставлено відповідне запитання. Результати показали, що більшість респонденток — 57 % (132 особи) — відповіли «ні», 26 % (60 осіб) зазначили, що могли б брати участь за певних обставин, і лише 15 % (36 осіб) відповіли «так», вказавши, що обов'язково брали б участь.

Для уточнення причин, які впливають на участь здобувачок у змаганнях з плавання, отримали такі результати: 39 % (90 осіб) зазначили, що не мають бажання змагатися; 34 % (78 осіб) вказали на недостатній рівень своєї підготовки. Майже однакова кількість респонденток зазначила інші чинники: 21 % (48 осіб) — брак часу, 18 % (42 особи) невпевненість у власних силах, та 7 % (18 осіб) — відсутність мотивації й підтримки.

3 метою виявлення рівня стресостійкості у здобувачок вищої освіти було проведено анкетне опитування. За його результатами отримані такі показники:

У 8 % (18 осіб) респонденток зафіксовано показник у межах норми (0-5 балів), що засвідчує відсутність вираженого стресового стану.

У 12 % (28 осіб) рівень стресу перебував у межах 6-12 балів, що відповідає помірному ступеню стресового навантаження.

Убільшості учасниць дослідження—55 % (126 осіб) — показники становили 13-24 бали, що свідчить про виразне напруження емоційних і фізіологічних процесів, спричинене дією інтенсивного стресового фактора, який не був компенсований. Для цієї групи доцільним є застосування спеціальних методів регуляції емоційного стану та подолання стресу.

Стан сильного стресу було виявлено у 21 % (50 осіб) здобувачок, результати яких перебували в межах 25-40 балів. Такі показники свідчать про високу інтенсивність стресового впливу та зниження адаптаційних можливостей організму. У цьому випадку рекомендовано звернення по психологічну або психотерапевтичну допомогу.

У 3 % (6 осіб) здобувачок освіти зафіксовано показники, що перевищують 40 балів, що свідчить про перехід організму до третьої, найбільш небезпечної стадії стресу, яка характеризується виснаженням енергетичних та адаптаційних ресурсів.

Отже, результати дослідження показали, що понад 79 % здобувачок освіти перебувають у стані стресу різного ступеня вираженості, що зумовлює необхідність упровадження спеціальних психопрофілактичних і

корекційних заходів, а також фахового психологічного супроводу з метою формування навичок саморегуляції та підвищення рівня стресостійкості. Лише у 20% респонденток зафіксовано показники, які свідчать про відсутність значного стресу на момент проведення дослідження.

Дискусія

Отримані результати дослідження засвідчують наявність суперечливої тенденції серед здобувачок вищої освіти: з одного боку, більшість респонденток позитивно ставляться до занять фізичною культурою, однак реальний рівень їхньої рухової активності, зокрема участь у плаванні, залишається низьким. Встановлено, що лише незначна частка студенток систематично займається плаванням, тоді як більшість робить це епізодично або взагалі уникає цього виду фізичної активності. Така ситуація свідчить про недостатній рівень сформованості мотивації до занять плаванням [27]. Аналіз результатів анкетного опитування показав, що основними чинниками, які перешкоджають регулярним заняттям плаванням, є брак часу, обмежений доступ до басейнів, страх води, відсутність належних умов та недостатня поінформованість щодо користі та можливостей цього виду спорту.

Наші результати узгоджуються з попередніми дослідженнями щодо пріоритетних видів занять під час фізичної культури: спортивні ігри викликають більший інтерес серед студентів, проте, як зазначають численні дослідження, вони не завжди є ефективним засобом подолання стресу.

Взаємодія в команді та наявність елементу змагальності сприяють розвитку комунікативних навичок, проте водночас можуть провокувати емоційне напруження та підвищення рівня тривожності. Як зазначають S. Hanton, D. Fletcher і G. Coughlan (2005), змагальний компонент активує симпатичну нервову систему, що знижує релаксаційний ефект фізичної активності [23; 24; 28]. Отримані нами результати, згідно з якими 65 % (150 осіб) здобувачок виявили бажання виконувати вправи у воді для розслаблення та реабілітації, підтверджують ці висновки: більшість респонденток не прагнуть до змагальності, віддаючи перевагу видам діяльності, що забезпечують психологічне розвантаження, релаксацію та можливість неформального спілкування.

Ефективність фізичних вправ у воді також підтверджується попередніми дослідженнями [6; 14; 19; 22; 25], які показують, що водне середовище забезпечує високий рівень задоволення від рухової активності [21]. Це спостерігається навіть у тих, хто не має добре розвинених навичок плавання, що робить його доступним і ефективним засобом психофізичного відновлення для широкого кола студентів [25; 26].

Результати проведеного опитування підтвердили ці дані: здобувачки освіти прагнуть насамперед розслабитися та отримати реабілітаційний ефект, а не лише удосконалювати техніку плавання. Порівняння отриманих результатів із даними попередніх досліджень [7; 14] свідчить, що інтерес молоді до плавання відповідає загальноукраїнським тенденціям зниження залученості до оздоровчих видів спорту.

Водночас, як зазначають А. Burlingham, Н. Denton, Н. Massey, N. Vides, М. Harper (2024) та В. Рубан, В. Зубко (2023), плавання є одним із найефективніших засобів підвищення адаптаційних резервів організму, нормалізації психоемоційного стану та розвитку стресостійкості. Це узгоджується з результатами нашого дослідження, відповідно до яких значна частина респонденток — 79 % (182 особи) — продемонструвала середній або високий рівень стресових проявів, що свідчить про виражене напруження емоційних і фізіологічних процесів, зумовлене дією інтенсивного стресового фактора.

Залучення студентів до регулярних занять плаванням може виступати не лише чинником фізичного вдосконалення, а й ефективним засобом психологічної реабілітації в умовах підвищеного стресу [21-22].

Важливу роль у формуванні інтересу та мотивації відіграє теоретична підготовка та базова спеціальна підготовка на суші [13]. У нашому дослідженні 80 % респонденток не виявили інтересу до теоретичних аспектів, а 100 % опитаних не знали базових комплексів вправ на суші, що свідчить про відсутність мінімальної підготовки до водних занять. Виявлений низький рівень теоретичної зацікавленості та недостатня теоретико-методична підготовка здобувачок освіти під час опитування (78 %, 150 осіб) свідчать про необхідність модернізації змісту навчальної дисципліни «Фізична культура» [2; 7; 21]. Доцільним є посилення міждисциплінарного підходу – поєднання практичних занять із інформаційними блоками щодо впливу плавання на організм, методики дихання, профілактики травматизму та збереження психічного здоров'я. Такий підхід сприятиме усвідомленому формуванню мотивації до занять плаванням і розвитку відповідального ставлення до власного здоров'я.

Особливої уваги потребує високий рівень стресу серед здобувачок освіти (79 %), що перевищує показники довоєнного періоду, що можна пояснити впливом сучасних соціально-економічних та воєнних викликів [1; 8]. За таких умов формування стресостійкості слід розглядати як один із ключових напрямів освітнього процесу, а використання засобів фізичної культури, зокрема плавання, — як ефективний інструмент психологічної підтримки та гармонізації психофізичного стану студенток.

Висновки

Більшість здобувачок вищої освіти позитивно ставляться до занять фізичною культурою, однак рівень їхньої активності у плаванні залишається низьким.

Основними мотивами участі у плаванні є прагнення зміцнити здоров'я, покращити фізичну форму та зняти психоемоційне напруження, тоді як основними перешкодами виступають брак часу, відсутність належних умов, страх води, обмежений доступ до басейнів і недостатні навички плавання.

Понад 79 % респонденток перебувають у стані підвищеного стресу, що свідчить про необхідність використання плавання як ефективного засобу психофізичної регуляції та психологічної підтримки студентів.

Результати дослідження підтверджують необхідність комплексного підходу до підвищення інтересу здобувачів вищої освіти до занять плаванням. Такий підхід має поєднувати педагогічні, психологічні та соціальні чинники, спрямовані на підвищення рівня фізичної активності, зміцнення психічного здоров'я та розвиток навичок саморегуляції. Подальші дослідження доцільно зосередити на розробленні програм цілеспрямованого формування мотивації до занять плаванням як засобу розвитку стресостійкості та гармонізації психофізичного стану студенток.

Конфлікт інтересів. Автори заявляють про відсутність конфлікту інтересів.

Джерела та література

- 1. Банах В., Єдинак Г., Клюс О., Галаманжук Л., Балацька Л., Римар С., Цимбалістий В. Я. Стан стресостійкості та вияву морфофункціональних показників дівчат протягом першого року навчання у закладі вищої освіти. Вісник Кам'янець-Подільського національного університету імені Івана Огієнка. Фізичне виховання, спорт і здоров'я людини. 2024. Вип. 29. (2). 76–82. https://doi.org/10.32626/2309-8082.2024-29(2).76-82
- Гаврилюк В., Левандовська Л., Галаманжук Л. Характеристика мотивації учнів основної школи до фізичної активності. Вісник Кам'янець-Подільського національного університету імені Івана Огієнка. Фізичне виховання, спорт і здоров'я людини. 2025. Вип. 30. (1). 31–39. https://doi.org/10.32626/2309-8082.2025-30(1).31-39

References

1. Banakh, V., ledynak, G., Klyus, O., Halamanzhuk, L., Balats'ka, L., Rymar, S., Tsymbalistyy, V. YA. (2024), "Stan stresostiykosti ta vyyavu morfofunktsional'nykh pokaznykiv divchat protyahom pershoho roku navchannya u zakladi vy shchoyi osvity" [The state of stress resistance and the manifestation of morphofunctional indicators of girls during the first year of study at a higher education institution]. Bulletin of Kamyanets-Podilskyi Ivan Ogiienko National University. Physical Education, Sports and Human Health, Issue 29(2), pp. 76–82. https://doi.org/10.32626/2309-8082.2024-29(2).76-82 [in Ukraine]

- 3. Дакал Н. А. Плавання як засіб покращення психофізичного стану студентів. Науковий часопис Національного педагогічного університету імені МП Драгоманова. Серія 15: Науковопедагогічні проблеми фізичної культури (фізична культура і спорт). 2020. (7). С. 62–65. http://nbuv.gov.ua/UJRN/Nchnpu 015 2020 7 13
- Єдинак Г. А., Банах В. І. Підготовка майбутніх фахівців з фізичного виховання та спорту до індивідуалізації і персоналізації параметрів освітнього процесу на основі використання умовних генетичних маркерів. Формування та розвиток здоров'язбережувального середовища в закладах освіти різного рівня : колективна монографія. Кам'янець-Подільський : Кам'янець-Подільський національний університет імені Івана Огієнка, 2024. С. 155–224. https://reposit.uni-sport.edu.ua/items/9907be88-202b-49c2-9614-9402f21cf42e
- 5. Індика С. Фізична активність та якість життя безобітного населення в умовах воєнного стану. Вісник Кам'янець-Подільського національного університету імені Івана Огієнка. Фізичне виховання, спорт і здоров'я людини. 2025. Вип. 30. (1). С. 40–46. https://doi.org/10.32626/2309-8082.2025-30(1).40-46
- 6. Зубко В., Черевичко О., Смірнов К. Плавання як засіб оздоровлення студентів у ЗВО. Науковий часопис Національного педагогічного університету імені М. П. Драгоманова. Серія № 15. Науковопедагогічні проблеми фізичної культури (фізична культура і спорт). 2023. Вип. 3(161)23. С. 83—86. https://doi.org/10.31392/NPU-nc.series15.2023.03(161).19
- 7. Клюс О. А., Кужель М. М., Скавронський О. П., Гуска М. В. Передумови формування ціннісного ставлення студентів до розвитку фізичної підготовленості. Вісник КПНУ імені Івана Огієнка. Серія: Фізичне виховання, спорт і здоров'я людини, 2020. Вип. 16. С. 27–31. https://doi.org/10.32626/2309-8082.2020-16.27-31
- 8. Мороз Л. І., Сафін О. Д. Модель розвитку стресостійкості здобувачів вищої освіти в умовах воєнного стану. Вчені записки ТНУ імені В.І. Вернадського. Серія : Психологія. 2022. 34(73). 5. С. 48–53. https://doi.org/10.32782/2709-3093/2022.5/08
- 9. Рубан В. Інтерес до занять плаванням, як фактор збереження талановитої молоді в спорті. Інтерес до занять плаванням, як фактор збереження талановитої молоді в спорті. Фізична культура і спорт. Виклики сучасності: зб. тез доп. ІІІ наук.-практ. конф., Харків, 1–2 груд. 2023. С. 191–194. https://dspace.hnpu.edu.ua/handle/123456789/13561
- Сукач О., Боднаренко В., М'якота О., Літвінов П. Фізичне виховання в системі профілактики стресу та збереження здоров'я студентської молоді. Витоки педагогічної майстерності. 2025. (35). С. 214–217. https://doi.org/10.33989/2075-146x.2025.35.331174
- 11. Харко О. С. Практичні рекомендації дотримання психологічних умов формування стресостійкості студентів ЗВО в навчальному процесі. Наукові записки Національного університету «Острозька академія». Серія «Психологія» : науковий журнал. Острог. 2022. № 14. С. 46–56. https://doi.org/10.25264/2415-7384-2022-14
- 12. Шиян Б. М., Єдинак Г. А., Петришин Ю. В. Наукові дослідження у фізичному вихованні та спорті : навч. посібник. Кам'янець-Подільський : ТОВ «Друкарня Рута». 2013. 280 с. https://library.megu.edu.ua:9443/jspui/handle/123456789/5163
- 13. Amin, B. F., Sukur, A., Wiradihardja, S., Samsudin, Hernawan, Gani, R. A., Kurtoğlu, A., Tannoubi, A., Alexe, C. I. and Setiawan, E. (2024). From Dryland to Aquatic Exercise: Improving Selected Physical Fitness and Swimming Performance Parameters of Elite Adolescent Athletes With Disabilities'. *Physical Activity and Health*, 8(1), 210–222. doi: 10.5334/paah.384

- Havrylyuk V., Levandovs'ka L., Halamanzhuk L. (2025), "Kharakterystyka motyvatsiyi uchniv osnovnoyi shkoly do fizychnoyi aktyvnosti" [Characteristics of motivation of primary school students for physical activity]. Bulletin of Kamyanets-Podilskyi Ivan Ogiienko National University. Physical Education, Sports and Human Health, 30(1), pp. 31–39. https://doi.org/10.32626/2309-8082.2025-30(1).31-39 [in Ukraine]
- Dakal, N. A. (2020), "Plavannya yak zasib pokrashchennya psykhofizychnoho stanu studentiv" [Swimming as a means of improving the psychophysical condition of students]. Scientific Journal of the National Pedagogical University named after MP Dragomanov. Series 15: Scientific and pedagogical problems of physical culture (physical culture and sports),7, 62–65. http://nbuv.gov.ua/UJRN/ Nchnpu_015_2020_7_13 [in Ukraine]
- Iedynak, G. A., Banakh, V. I. (2024), Pidhotovka maybutnikh fakhivtsiv z fizychnoho vykhovannya ta sportu do indyvidualizatsiyi i personalizatsiyi parametriv osvitn'oho protsesu na osnovi vykorystannya umovnykh henetychnykh markeriv. Formuvannya ta rozvytok zdorov'yazberezhuval'noho seredovyshcha v zakladakh osvity riznoho rivnya [Training future specialists in physical education and sports for individualization and personalization of educational process parameters based on the use of conditional genetic markers. Formation and development of a health-preserving environment in educational institutions of different levels]. Ivan Ohienko Kamianets-Podilskyi National University, Kamianets-Podilskyi. pp. 155–224. https://reposit.uni-sport.edu.ua/items/9907be88-202b-49c2-9614-9402f21cf42e [in Ukraine]
- Indyka, S. (2025), "Fizychna aktyvnist' ta yakist' zhyttya bezobitnoho naselennya v umovakh voyennoho stanu" [Physical activity and quality of life of the homeless population under martial law]. Bulletin of Kamyanets-Podilskyi Ivan Ogiienko National University. Physical Education, Sports and Human Health, Issue 30(1), pp. 40–46. https:// doi.org/10.32626/2309-8082.2025-30(1).40-46
- Zubko, V., Cherevychko, O., Smirnov, K. (2023), "Plavannya yak zasib ozdorovlennya studentiv u ZVO." [Swimming as a means of improving the health of students in higher education institutions]. Scientific Journal of the National Pedagogical University named after M. P. Dragomanov. Series No. 15. Scientific and pedagogical problems of physical culture (physical culture and sports), 3(161)23, pp. 83–86. https://doi.org/10.31392/NPU-nc.series15.2023.03(161).19 [in Ukraine].
- Klyus, O. A., Kuzhel', M. M., Skavrons'kyy, O. P., Huska, M. V. (2020), "Peredumovy formuvannya tsinnisnoho stavlennya studentiv do rozvytku fizychnoyi pidhotovlenosti" [Prerequisites for the formation of the value attitude of students to the development of physical fitness]. Bulletin of Kamyanets-Podilskyi Ivan Ogiienko National University. Physical Education, Sports and Human Health, Issue 16, pp. 27–31. http://visnyksport.kpnu.edu.ua/article/view/202635/202490 [in Ukraine]
- Moroz, L. I., Safin O. D. (2022), "Model' rozvytku stresostiykosti zdobuvachiv vyshchoyi osvity v umovakh voyennoho stanu" [Model of development of stress resistance of higher education students in conditions of martial law]. Scientific notes of V.I. Vernadsky TNU. Series: Psychology, 48–53. https://doi.org/10.32782/2709-3093/2022.5/08 [in Ukraine]
- Ruban, V. (2023), "leteres do zanyat' plavannyam, yak faktor zberezhennya talanovytoyi molodi v sporti. Interes do zanyat' plavannyam, yak faktor zberezhennya talanovytoyi molodi v sporti" [leteres to swimming lessons, as a factor in preserving talented youth in sports. Interest in swimming lessons, as a factor in preserving talented youth in sports]. Physical culture and sports. Challenges of modernity: collection of abstracts of the conference, Kharkiv, 1–2 Dec, 35, pp. 191–194. https://dspace.hnpu.edu.ua/handle/123456789/13561 [in Ukraine]

- Barker, AL., Talevski, J., Morello, RT., Brand, CA., Rahmann, AE., Urquhart DM. (2014). Effectiveness of aquatic exercise for musculoskeletal conditions: a meta-analysis. *Arch Phys Med Rehabil*, 95(9), 1776–86. doi: 10.1016/j.apmr.2014.04.005.
- Banakh ,V., ledynak, G., Sovtisik, D., Galamanzhuk, L., Bodnar, A., Blavt, O., Balatska, L., Alieksieiev, O. (2023). Physiological characteristics of young people in the absence of mandatory physical activity required at the university. *Physical Education Theory* and Methodology, 23, 2, 253–261. https://doi.org/10.17309/ tmfv.2023.2.14
- 16. Banakh, V., ledynak, G., Galamanzhuk, L., Blavt, O., Huska, M., Hrebik, O., Dmytruk, V., Kovalchuk, V. (2024). Revealing the Peculiarities of Female Students' Physiological Characteristics with Different Somatotypes in the Absence of Compulsory Physical Activity at University. *Physical Education Theory and Methodology*, 24, 5, 758–768. https://doi.org/10.17309/tmfv.2024.5.11
- Banakh, V., ledynak G., Galamanzhuk, L., Blavt, O., Faidevych, V., Hrebik, O., Musiyenko, O. (2025). Clarifying Differences in the Manifestation of Young Men's Motor Fitness Components in the Absence of Compulsory Physical Activity. *Physical Education Theory* and Methodology, 25, 2, 277–285. https://doi.org/ 10.17309/ tmfv.2025.2.08
- 18. Burlingham, A., Denton, H., Massey, H., Vides, N., Harper, M. (2024). Sea swimming as a novel intervention for depression and anxiety-A feasibility study exploring engagement and acceptability. Ment Health Physical Activity, 23, 100472. doi: 10.1016/j. mhpa.2022.100472
- Byshevets, N., Andrieieva, O., Goncharova, N., Hakman, A., Zakharina, I. Synihovets, I., Zaitsev, V. (2023). Prediction of stressrelated conditions in students and their prevention through healthenhancing recreational physical activity. *Journal of Physical Education* and Sport, 23 (4), 117, 937–943. doi:10.7752/jpes.2023.04117.
- Byshevets, N., Andrieieva, O., Pasichnsk, L., Goncharova, N., Yarmak, O., Zakharina, I., Blystsv, T. (2024). Evaluation of emotional disorder risk in students with low physical activity levels under stressful conditions. *Journal of Physical Education and Sport*, 24 (4), 894–904. doi:10.7752/jpes.2024.04102
- 21. Coelho, D., Eira, P., Azevedo, A. (2025). Fear of the Aquatic Environment in Learning Swimming: Causes, Effects, and Learning Methodologies. *Education Sciences*, 15(6), 760. https://doi.org/10.3390/educsci15060760
- 22. Denton, H., Aranda, K. (2020). The wellbeing benefits of sea swimming. Is it time to revisit the sea cure? qualitative research in sport. *Exerc Health*, 12, 647–63. doi: 10.1080/2159676X.2019.1649714
- García-Gonzálvez, S., López-Plaza, D., Abellán-Aynés, O. (2022).
 Influence of Competition on Anxiety and Heart Rate Variability in Young Tennis Players. *Healthcare*,10 (11), 2237. https://doi.org/10.3390/healthcare10112237
- Hanton, S., Fletcher, D., Coughlan, G. (2005). Stress in elite sport performers: a comparative study of competitive and organizational stressors. *J Sports Sci*, 23(10), 1129-41. doi: 10.1080/02640410500131480. PMID: 16194989.
- Honda, T., Kamioka, H. (2012). Curative and health enhancement effects of aquatic exercise: evidence based on interventional studies. *Open Access J Sports Med*, 29, 3, 27-34. doi: 10.2147/ OAISM \$30429
- Papadimitriou, K., Loupos, D. (2021). The Effect of an Alternative Swimming Learning Program on Skills, Technique, Performance, and Salivary Cortisol Concentration at Primary School Ages Novice Swimmers. *Healthcare*, 9, 1234. https://doi.org/10.3390/ healthcare9091234

- 10. Sukaya, O., Bodnarenko, V., M"yakota, O., Litvinov, P. (2025), "Fizychne vykhovannya v systemi profilaktyky stresu ta zberezhennya zdorov"ya student·s'koyi molodi" [Physical education in the system of stress prevention and health preservation of student youth]. *Origins of pedagogical skills*, 35, pp. 214–217. https://doi.org/10.33989/2075-146x.2025.35.331174 [in Ukraine].
- 11. Kharko, O. S. (2022), "Praktychni rekomendatsiyi dotrymannya psykholohichnykh umov formuvannya stresostiykosti studentiv ZVO v navchal'nomu protsesi" [Practical recommendations for observing psychological conditions for the formation of stress resistance of students of higher education institutions in the educational process]. Scientific notes of the National University «Ostroh Academy». Series «Psychology»: scientific journal, 14, pp. 46–56 https://doi.org/10.25264/2415-7384-2022-14 [in Ukraine].
- Shyjan, B. M., ledynak, G. A., Petryshen Yu. V. (2013), Naukovi doslidzhennya u fizychnomu vykhovanni ta sporti [Scientific research in physical education and sports]. TOV «Drukarnya Ruta, Kam"yanets'Podil's'kiy. 280p. https://library.megu.edu.ua:9443/jspui/handle/123456789/5163 [in Ukraine].
- Amin, B. F., Sukur, A., Wiradihardja, S., Samsudin, Hernawan, Gani, R. A., Kurtoğlu, A., Tannoubi, A., Alexe, C. I. and Setiawan, E. (2024). From Dryland to Aquatic Exercise: Improving Selected Physical Fitness and Swimming Performance Parameters of Elite Adolescent Athletes With Disabilities'. Physical Activity and Health, 8(1), 210–222. doi: 10.1016/j.apmr.2014.04.005. Epub 2014 Apr 24. PMID: 24769068.
- Barker, AL., Talevski, J., Morello, RT., Brand, CA., Rahmann, AE., Urquhart DM. (2014). Effectiveness of aquatic exercise for musculoskeletal conditions: a meta-analysis. *Arch Phys Med Rehabil*, 95(9), 1776 –86. doi: 10.1016/j.apmr.2014.04.005.
- Banakh, V., ledynak, G., Sovtisik, D., Galamanzhuk, L., Bodnar, A., Blavt O., Balatska L., Alieksieiev O. (2023). Physiological characteristics of young people in the absence of mandatory physical activity required at the university. *Physical Education Theory and Methodology*, 23(2), 253–261. https://doi.org/10.17309/tmfv.2023.2.14
- Banakh, V., ledynak, G., Galamanzhuk, L., Blavt, O., Huska, M., Hrebik, O., Dmytruk, V., Kovalchuk, V. (2024). Revealing the Peculiarities of Female Students' Physiological Characteristics with Different Somatotypes in the Absence of Compulsory Physical Activity at University. *Physical Education Theory and Methodology*, 24(5), 758–768. https://doi.org/10.17309/tmfv.2024.5.11
- Banakh, V., ledynak, G., Galamanzhuk, L., Blavt, O., Faidevych, V., Hrebik, O., Musiyenko, O. (2025). Clarifying Differences in the Manifestation of Young Men's Motor Fitness Components in the Absence of Compulsory Physical Activity. *Physical Education Theory* and Methodology,, 25(2), 277–285. https://doi.org/10.17309/ tmfv.2025.2.08
- 18. Burlingham, A., Denton, H., Massey, H., Vides, N., Harper, M. (2024). Sea swimming as a novel intervention for depression and anxiety-A feasibility study exploring engagement and acceptability. *Ment Health Physical Activity*, 23, 100472. doi: 10.1016/j.mhpa.2022.100472
- Byshevets, N., Andrieieva, O., Goncharova, N., Hakman, A., Zakharina,
 Synihovets, I., Zaitsev, V. (2023). Prediction of stress-related conditions in students and their prevention through health-enhancing recreational physical activity. *Journal of Physical Education and Sport*, 23 (4), 117, 937 –943. doi:10.7752/jpes.2023.04117.
- Byshevets, N., Andrieieva, O., Pasichnsk, L., Goncharova, N., Yarmak, O., Zakharina, I., Blystsv, T. (2024). Evaluation of emotional disorder risk in students with low physical activity levels under stressful conditions. *Journal of Physical Education and Sport*, 24 (4), 894-904. doi:10.7752/jpes.2024.04102
- Coelho, D., Eira, P., Azevedo, A. (2025). Fear of the Aquatic Environment in Learning Swimming: Causes, Effects, and Learning Methodologies. *Education Sciences*, 15(6), 760. https://doi. org/10.3390/educsci15060760

- 27. Sheyko. L. (2015). Research of auxiliary supporting means in swimming training of adults, which are afraid of water. *Kharkiv State Academy of Physical Culture*. 1(45), 108–112. https://journals.uran.ua/sport herald/article/view/59302
- Sun, L., Wang, G., Wu, Z., Xie, Y., Zhou, L., Xiao, L., Wang, H. (2021). Swimming exercise reduces the vulnerability to stress and contributes to the AKT/GSK3β/CRMP2 pathway and microtubule dynamics mediated protective effects on neuroplasticity in male C57BL/6 mice. *Pharmacol Biochem Behav*, 211, 173285. doi: 10.1016/j.pbb.2021.173285.
- Wang, W., Yu, L., Huang, L., Gao, X. (2025). Mechanisms of the impact of exercise intervention on college students' mental health: a longitudinal experimental study using swimming as an example. Frontiers in Psychology, 16. https://doi.org/10.3389/ fpsyg.2025.1535214

Надійшла до друку 25.09.2025

- Denton, H., Aranda, K. (2020). The wellbeing benefits of sea swimming.
 Is it time to revisit the sea cure? qualitative research in sport. Exerc Health, 12, 647–63. doi: 10.1080/2159676X.2019.1649714
- García-Gonzálvez, S., López-Plaza, D., Abellán-Aynés, O. (2022). Influence of Competition on Anxiety and Heart Rate Variability in Young Tennis Players. *Healthcare*, 10(11), 2237. https://doi. org/10.3390/healthcare10112237
- Hanton, S., Fletcher, D., Coughlan, G. (2005). Stress in elite sport performers: a comparative study of competitive and organizational stressors. *J Sports Sci*, 23(10), 1129–41. doi: 10.1080/02640410500131480. PMID: 16194989.
- Honda, T., Kamioka, H. (2012). Curative and health enhancement effects of aquatic exercise: evidence based on interventional studies. Open Access J Sports Med, 29, 3, 27-34. doi: 10.2147/OAJSM.S30429.
- Papadimitriou, K., Loupos, D. (2021). The Effect of an Alternative Swimming Learning Program on Skills, Technique, Performance, and Salivary Cortisol Concentration at Primary School Ages Novice Swimmers. *Healthcare*, 9, 1234. https://doi.org/10.3390/ healthcare9091234
- Sheyko. L. (2015). Research of auxiliary supporting means in swimming training of adults, which are afraid of water. Kharkiv State Academy of Physical Culture,1(45), 108 –112. https://journals.uran. ua/sport_herald/article/view/59302
- 28. Sun, L., Wang, G., Wu, Z., Xie, Y., Zhou, L., Xiao, L., Wang, H. (2021). Swimming exercise reduces the vulnerability to stress and contributes to the AKT/GSK3β/CRMP2 pathway and microtubule dynamics mediated protective effects on neuroplasticity in male C57BL/6 mice. *Pharmacol Biochem Behav*, 211, 173285. doi: 10.1016/j. pbb.2021.173285.
- Wang, W., Yu, L., Huang, L., Gao, X. (2025). Mechanisms of the impact of exercise intervention on college students' mental health: a longitudinal experimental study using swimming as an example. Frontiers in Psychology, 16.https://doi.org/10.3389/ fpsyg.2025.1535214

ФОРМУВАЛЬНЕ ОЦІНЮВАННЯ ЯК ІНСТРУМЕНТ ПІДВИЩЕННЯ МОТИВАЦІЇ ДО ЗАНЯТЬ ФІЗИЧНОЮ КУЛЬТУРОЮ

Жанна Цимбалюк¹

https://orcid.org/0000-0002-9129-5689

Сергій Палевич²

https://orcid.org/0000-0002-8304-1857

Володимир Кондратюк³

https://orcid.org/0000-0001-5155-4239

Ірина Кривенцова⁴

https://orcid.org/0000-0001-6931-3978

Вікторія Клименченко⁵

https://orcid.org/0000-0001-9431-8172

- ^{1, 4, 5} Харківський національний педагогічний університет імені Г∙ С∙ Сковороди, м∙ Харків, Україна
 - ² Національна академія Служби безпеки України, м. Київ, Україна
 - ^з Харківський національний університет Повітряних Сил імені Івана Кожедуба, м. Харків, Україна

кореспондент-автор – Ж. Цимбалюк: zhanna.tzymbaliuk@gmail.com

doi: 10.32626/2309-8082.2025-30(3).166-173

У сучасних умовах зниження рівня фізичної активності здобувачів освіти та збільшення часу, проведеного за гаджетами, надзвичайно гостро постає питання формування стійкої мотивації до занять фізичною культурою. Одним із перспективних напрямів вирішення цієї проблеми є впровадження формувального оцінювання в освітній процес. Формувальне оцінювання, що орієнтоване на зворотний зв'язок, самоаналіз та індивідуальний прогрес, має значний потенціал як мотиваційний інструмент у навчанні фізичної культури. Актуальність дослідження зумовлена необхідністю пошуку педагогічних підходів, які б ефективно активізували здобувачів, залучали їх до навчального процесу та сприяли формуванню внутрішньої мотивації до фізичних вправ і здорового способу життя. Метою дослідження є виявлення ефективності формувального оцінювання як чинника підвищення мотивації учнів до участі в уроках фізичної культури. Матеріал та методи дослідження. У дослідженні взяли участь учні 7-х класів (віком 12-13 років), які були розподілені на експериментальну (22 особи) та контрольну (19 осіб) групи. Для оцінювання мотивації використовувався опитувальник PALMS (Physical Activity and Leisure Motivation Scale), що включає вісім мотиваційних шкал: розвиток навичок, задоволення, змагання/досягнення, фізичне здоров'я, психологічні переваги, зовнішні заохочення, соціальна взаємодія, контроль ваги. Протягом одного семестру в експериментальній групі застосовувалося формувальне оцінювання, яке включало елементи самооцінювання, взаємооцінювання, індивідуальний зворотний зв'язок та цифрові засоби фіксації прогресу. Аналіз даних проводився з використанням непараметричних статистичних методів (критерій Вілкоксона), рівень значущості визначено як р < 0.05. Результати дослідження. Отримані результати засвідчили статистично достовірне зростання показників мотивації в експериментальній групі за такими шкалами: розвиток вмінь, змагання / досягнення, зовнішні заохочення, соціальна взаємодія, контроль ваги. У контрольній групі достовірних змін не зафіксовано. Найбільш виражені позитивні зрушення спостерігались у дівчаток за шкалами розвитку навичок та контролю ваги, що може свідчити про високу чутливість до особистісно орієнтованих форм оцінювання. Встановлено, що впровадження формувального оцінювання активізує внутрішню мотивацію учнів, підвищує зацікавленість до навчального процесу та сприяє формуванню позитивного емоційного ставлення до занять фізичною культурою. Висновки. У підсумку можна констатувати, що формувальне оцінювання є ефективним педагогічним засобом підвищення навчальної мотивації в галузі фізичної культури. Отримані результати узгоджуються з положеннями теорії самодетермінації, згідно з якою створення умов для розвитку автономії, компетентності та соціальної взаємодії сприяє зростанню внутрішньої мотивації. З огляду на це доцільно впроваджувати формувальне оцінювання як складову системної інноваційної практики у шкільному курсі фізичної культури. Ключові слова: урок фізичної культури, мотивація до

Ключові слова: урок фізичної культури, мотивація до занять фізичною активністю, педагогічні технології, формувальне оцінювання, індивідуальний зворотній зв'язок, самооцінювання, взаємооцінювання.

Zhanna Tsymbalyuk, Serhiy Palevych, Volodymyr Kondratyuk, Iryna Kryventsova, Viktoriia Klymenchenko. Formative assessment as a tool for increasing motivation for physical education classes

Abstract. In the current conditions of decreasing physical activity levels of students and increasing time spent on gadgets, the issue of forming a sustainable motivation for physical education is extremely acute. One of the promising directions for solving this problem is the introduction of formative assessment into the educational process. Formative assessment. which is focused on feedback, self-analysis and individual progress, has significant potential as a motivational tool in teaching physical education. The relevance of the research is due to the need to find pedagogical approaches that would effectively activate students, involve them in the educational process and contribute to the formation of internal motivation for physical exercise and a healthy lifestyle. The purpose of the study is to identify the effectiveness of formative assessment as a factor in increasing students' motivation to participate in physical education lessons. Research material and methods. The study was conducted with students in the 7th grade (aged 12-13 years), who were divided into an experimental (22 people) and a control (19 people) group. To assess motivation, the PALMS questionnaire (Physical Activity and Leisure Motivation Scale) was used, which includes eight motivational scales: skill development, enjoyment, competition/ achievement, physical health, psychological benefits, external incentives, social interaction, weight control. During one semester, the experimental group used formative assessment, which included elements of self-assessment, peer assessment, individual feedback and digital means of recording progress. Data analysis was carried out using non-parametric statistical methods (Wilcoxon test), the significance level was defined as p < 0.05. Research results. The results obtained showed a statistically significant increase in motivation indicators in the experimental group on the following scales: skill development, competition/achievement, external incentives, social interaction, weight control. No significant changes were recorded in the control group. The most pronounced positive changes were observed in girls on the skill development and weight control scales, which may indicate a high sensitivity to personally oriented forms of assessment. It was found that the introduction of formative assessment activates the intrinsic motivation of students, increases interest in the educational process and contributes to the formation of a positive emotional attitude towards physical education classes. Conclusions. In conclusion, it can be stated that formative assessment is an effective pedagogical means of increasing learning motivation in the field of physical education. The results obtained are consistent with the provisions of the theory of self-determination, according to which the creation of conditions for the development of autonomy, competence and social interaction contributes to the growth of intrinsic motivation. In view of this, it is advisable to introduce formative assessment as a component of systematic innovative practice in the school course of physical education.

Keywords: physical education lesson, motivation for physical activity, pedagogical technologies, formative assessment, individual feedback, self-assessment, peer assessment.

Вступ

Одним із ключових викликів сучасної шкільної освіти є низька мотивація учнів до участі в заняттях фізичною культурою, що негативно впливає не лише на фізичну підготовленість, а й на формування культури здорового способу життя. В умовах зростаючої соціальної й цифрової пасивності школярів актуальним постає пошук таких освітніх підходів, які забезпечували б активне залучення учнів у навчальний процес і сприяли їхній внутрішній мотивації. Одним із таких підходів є формувальне оцінювання, що передбачає постійний зворотний зв'язок, активну участь учнів в оцінці власних досягнень та орієнтацію на особистий прогрес [4; 7; 17].

Формувальне оцінювання у фізичній культурі трактується нами як системний педагогічний підхід, що передбачає постійний зворотний зв'язок між учителем і учнями, спрямований не на фіксацію кінцевого результату, а на підтримку процесу навчання та особистісного розвитку. На відміну від підсумкового оцінювання, яке зосереджене на результатах наприкінці навчального етапу, формувальне оцінювання охоплює всі етапи освітнього процесу й дозволяє своєчасно коригувати навчальну діяльність [1; 5; 30]. Воно поєднує індивідуалізований підхід, елементи самооцінки, взаємооцінювання та цілеспрямований зворотний зв'язок, що відповідає концепції «оцінювання для навчання». Наукові дослідження П. Блека, Д. Вільяма, Л. Виготського, Chng L.S., Lund J. підтверджують, що такий тип оцінювання сприяє підвищенню залученості учнів, розвитку рефлексії, саморегуляції та внутрішньої мотивації до навчання [10; 13; 27; 28]. Такий підхід особливо важливий у фізичному вихованні, оскільки враховує різний рівень фізичної підготовленості учнів, підвищує їхню мотивацію та сприяє розвитку навичок саморегуляції.

Питання застосування формувального оцінювання у фізичній культурі почало досліджуватись лише в останні десятиліття. Водночає більшість праць у цій галузі зосереджуються переважно на оцінці фізичної підготовленості або результативності виконання нормативів, тоді як мотиваційний аспект залишається недостатньо розкритим [2; 3; 6]. Попередні дослідження рідко торкаються інтегрованого впливу формувального оцінювання на психологічні аспекти навчання фізичної культури, зокрема підвищення зацікавленості, емоційного залучення та внутрішньої мотивації учнів [23; 26].

Ця стаття спирається на результати експериментального дослідження, у межах якого було впроваджено формувальне оцінювання на уроках фізичної культури серед учнів 7-х класів. Особливу увагу приділено аналізу мотиваційних змін, зафіксованих за допомогою опитувальника PALMS [31]. Автори виділяють саме ту частину наукової проблеми, яка залишається

недостатньо дослідженою: яким чином формувальне оцінювання може виступати інструментом підвищення мотивації школярів до занять фізичною активністю, з урахуванням індивідуальних і соціальних факторів.

Метою цієї статті є аналіз ефективності формувального оцінювання як чинника мотивації учнів до активної участі в заняттях фізичною культурою, а також узагальнення практичних підходів до його впровадження в освітній процес.

Матеріал і методи дослідження

Учасники. У дослідженні брали участь учні 7-х класів загальноосвітньої школи (21 хлопчиків і 20 дівчаток) віком від 12 до 13 років. За результатами медичного огляду всі учасники були віднесені до основної або підготовчої групи з фізичного виховання, хронічних захворювань не виявлено.

Перед початком дослідження було отримано письмову інформовану згоду від батьків учнів на участь їхніх дітей у педагогічному експерименті. Усі процедури дослідження відповідали етичним стандартам комітету з прав людини Харківського національного педагогічного університету імені Г.С. Сковороди та принципам Гельсінської декларації ВООЗ (2008, 2013).

Організація дослідження. Дослідження проводилось протягом ІІ семестру 2024-2025 навчального року. Усі учасники були поділені на дві групи: експериментальну (ЕГ) (7-А клас, 22 учні), де впроваджувалося формувальне оцінювання, та контрольну (КГ) (7-Б клас, 19 учнів), що навчалась за традиційною методикою.

У ході педагогічного експерименту формувальне оцінювання застосовувалося комплексно та включало кілька взаємопов'язаних компонентів:

- самооцінювання учні регулярно відзначали власні досягнення за допомогою індивідуальних карток прогресу;
- взаємооцінювання учні здійснювали обмін оцінками під час виконання фізичних вправ, що сприяло розвитку навичок співпраці та комунікації;
- зворотний зв'язок учителя як вербальний (пояснення, коментарі), так і письмовий (короткі індивідуальні рекомендації);
- цифрові засоби використання Google Classroom та інтерактивних форм опитування для фіксації прогресу.

Така структура відповідала сучасним підходам до формувального оцінювання у фізичному вихованні та дозволила здійснювати корекцію навчального процесу на основі отриманих даних.

Для оцінювання мотивації використовувався стандартизований опитувальник PALMS (Physical Activity and Leisure Motivation Scale), який містить 8 мотиваційних шкал: розвиток навичок, задоволення, змагання/досягнення, фізичне здоров'я, психологічні вигоди, зовнішні винагороди, соціальна взаємодія та контроль ваги [15].

Дослідження включало: анкетування до та після експерименту за допомогою Google Forms (Google Inc., США); спостереження за участю учнів у фізкультурних заняттях (за розробленими критеріями); застосування формувального оцінювання, яке включало: самооцінку, взаємооцінювання, індивідуальний вербальний та письмовий зворотний зв'язок; використання електронної платформи Google Classroom та цифрових карток прогресу.

Інструменти: ноутбук HP Pavilion (HP Inc., Palo Alto, США), Google Forms, MS Excel, SPSS Statistics 27 (ІВМ, США).

Статистичний аналіз. Для обробки результатів використовувалися непараметричні критерії: критерій Вілкоксона для парних вибірок, рівень значущості р < 0.05. Розраховувалися медіана (Md), межквартильний діапазон (IQR), Z- та р-значення.

Результати дослідження

Аналіз отриманих результатів за шкалами мотиваційного опитувальника PALMS свідчить про статистично достовірне зростання окремих мотиваційних компонентів у респондентів експериментальної групи після впровадження формувального оцінювання (табл. 1, 2).

Таблиця 1 – Динаміка змін мотивації до занять фізичною культурою (за шкалами PALMS) у хлопчиків (КГ n = 9; ЕГ n = 12)

Шкали	Група	Медіана	Межквартильний	Статистична значущість	
		Md	діапазон IQR	Z	р
Розвиток вмінь	КГДЕ	3.00	1.00	0.577	0.564
	КГПЕ	3.00	1.00		
	ЕГДЕ	3.50	1.00	2.714	0.007
	ЕГПЕ	4.00	1.00		
Задоволення	кгде	4.00	1.00	1.414	0.157
	КГПЕ	3.00	1.00		
	ЕГДЕ	4.00	1.00	1.00	0.317
	ЕГПЕ	4.00	0.75		
Змагання / Досягнення	КГДЕ	3.00	1.50	1.00	0.317
	КГПЕ	3.00	1.00		
	ЕГДЕ	3.00	1.00	2.646	0.008
	ЕГПЕ	4.00	0.00		
	кгде	4.00	1.50	0.577	0.564
	КГПЕ	4.50	1.00	0.577	0.564
Фізичне здоров'я	ЕГДЕ	4.50	1.00	1.00	0.317
	ЕГПЕ	4.50	1.00		
Психологічні переваги	КГДЕ	4.00	1.50	1.00	0.317
	КГПЕ	4.00	1.00		
	ЕГДЕ	4.00	1.75	1.414	0.157
	ЕГПЕ	4.00	1.00		
Зовнішні заохочення	кгде	3.00	1.00	1.00	0.317
	КГПЕ	3.00	0.50		
	ЕГДЕ	3.00	0.00	2.449	0.014
	ЕГПЕ	3.00	1.00		
Соціальна взаємодія	кгде	3.00	1.50	1.732	0.083
	КГПЕ	3.00	1.00		
	ЕГДЕ	3.50	1.00	2.00	0.046
	ЕГПЕ	4.00	0.00		
Контроль ваги	кгде	3.00	1.50	1.732	0.083
	КГПЕ	3.00	1.00		
	ЕГДЕ	3.50	1.00	2.449	0.014
	ЕГПЕ	4.00	0.75		

Примітки: КГДЕ — контрольна група до експерименту, КГПЕ — контрольна група після експерименту, ЕГДЕ — експериментальна група до експерименту, ЕГПЕ — експериментальна група після експерименту.

Зокрема, значущі зміни (р < 0.05) були виявлені за такими шкалами: «Розвиток вмінь» (як у хлопців, так і у дівчат), «Змагання / досягнення», «Зовнішні заохочення», «Соціальна взаємодія» та «Контроль ваги». У всіх зазначених випадках спостерігається приріст медіанних значень після експерименту та зменшення варіативнос-

ті результатів, що свідчить про стабілізацію позитивного мотиваційного впливу.

У контрольній групі статистично достовірних змін не виявлено (усі значення р > 0.05), що вказує на обмежений вплив традиційного оцінювання на зміну рівня мотивації до фізичної культури.

Таблиця 2 - Динаміка змін мотивації до занять фізичною культурою (за шкалами PALMS) (у дівчаток КГ n=10, ЕГ n=10)

Шкали	Група	Медіана Md	Межквартильний діапазон IQR	Статистична значущість	
				Z	р
Розвиток вмінь -	кгде	4.00	1.25	1.414	0.157
	КГПЕ	4.00	0.25		
	ЕГДЕ	4.00	1.25	2.33	0.020
	ЕГПЕ	5.00	1.00		
Задоволення	кгде	4.00	1.25	1.00	0.317
	КГПЕ	4.00	2.00		
	ЕГДЕ	4.00	1.00	0.00	1.00
	ЕГПЕ	4.00	0.25		
Змагання / Досягнення	кгде	3.50	1.50	1.414	
	КГПЕ	3.50	1.25		0.157
	ЕГДЕ	4.00	1.00	2.121	0.034
	ЕГПЕ	4.00	0.25		
	кгде	5.00	1.00	1 414	0.157
Фізичне здоров'я	КГПЕ	4.00	1.00	1.414	0.157
	ЕГДЕ	5.00	1.00	1.732	0.003
	ЕГПЕ	5.00	0.00		0.083
Психологічні переваги	кгде	4.50	2.00	0.577	0.564
	КГПЕ	4.00	1.25		
	ЕГДЕ	4.50	2.00	0.577	0.564
	ЕГПЕ	4.00	1.25		
Зовнішні заохочення	кгде	3.00	1.25	1.414	0.157
	КГПЕ	3.00	1.00		
	ЕГДЕ	3.50	1.00	2.121	0.034
	ЕГПЕ	4.00	0.50		
Соціальна взаємодія	кгде	4.00	1.25	1.414	0.157
	КГПЕ	4.00	1.00		
	ЕГДЕ	4.00	1.25	2.236	0.025
	ЕГПЕ	4.00	1.00		
Контроль ваги	кгде	4.00	2.00	0.577	0.564
	КГПЕ	4.00	1.25		
	ЕГДЕ	4.00	2.00	2.233	0.022
	ЕГПЕ	5.00	1.00		0.020

Примітки: КГДЕ — контрольна група до експерименту, КГПЕ — контрольна група після експерименту, ЕГДЕ — експериментальна група після експерименту.

Найбільш виражена динаміка зафіксована в експериментальній групі за шкалами «Розвиток вмінь» (у хлопчиків р = 0.007; у дівчаток р = 0.020), «Контроль ваги» (відповідно р = 0.014 та р = 0.020) та «Зовнішні

заохочення» (відповідно p = 0.014 та p = 0.034). Це свідчить про те, що формувальне оцінювання особливо сприяє розвитку пізнавальної, змагальної та соціальної мотивації в учнів.

Таким чином, інтеграція формувального оцінювання у структуру уроків фізичної культури позитивно впливає на формування в учнів внутрішньої та зовнішньої мотивації до занять, а також сприяє формуванню позитивного емоційного фону навчального процесу.

Результати свідчать про позитивний вплив формувального оцінювання на ключові аспекти мотивації до занять фізичною культурою. Особливо це стосується таких компонентів, як розвиток вмінь, досягнення, зовнішні заохочення, соціальна взаємодія та контроль ваги. Динаміка змін у контрольній групі була статистично недостовірною, що підтверджує ефективність експериментального педагогічного втручання.

Дискусія

Отримані результати цього дослідження узгоджуються з численними емпіричними роботами, які демонструють, що формувальне оцінювання (ФО) та якісний зворотний зв'язок сприяють підвищенню мотивації, саморегуляції й навчальних досягнень учнів.

Встановлені зміни в мотиваційних показниках узгоджуються з концептуальними підходами до формувального оцінювання, сформульованими Р. Black і D. Wiliam [29], які стверджують, що оцінювання має розглядатися як процес навчання, а не лише перевірка результатів. Включення учнів до процесу оцінювання шляхом само- та взаємооцінки стимулює відповідальність за власне навчання, підвищує залученість та формує позитивне ставлення до навчального матеріалу.

Shepard (2000) розглядає ФО як частину навчальної культури, що змінює роль оцінювання з контролюючої на підтримуючу [21]. Вrookhart (2010) підкреслює значення чіткості критеріїв та активної участі учнів у процесі оцінювання [11], тоді як Shute (2008) виділяє принципи ефективного формувального зворотного зв'язку [22]. У дослідженні Nicol & Macfarlane-Dick (2006) сформульовано модель і сім принципів якісного зворотного зв'язку, що допомагають розвитку саморегульованого навчання [18]. Carless (2007) акцентує увагу на створенні «культури фідбеку» в освітньому процесі, яка забезпечує довіру та готовність учнів застосовувати отримані поради [12].

Специфічно для фізичного виховання, Treschman, Stylianou & Brooks (2024) своєму огляді показали, що активна участь учнів у процесі зворотного зв'язку підвищує їхнє залучення та сприяє усвідомленню власного прогресу [25]. Slingerland, Weeldenburg & Borghouts (2024) довели, що вчителі, які застосовували ФО, відзначали більшу прозорість цілей і зростання мотивації школярів [24]. Дослідження *Effects of formative*

assessment on intrinsic motivation (2023) показало, що ФО позитивно впливає на внутрішню мотивацію через відчуття компетентності учнів [14].

Крім того, у роботі Khursheed та ін. (2023) доведено, що стратегії ФО значно підвищують академічні досягнення та мотивацію старшокласників [16]. Nicol & Macfarlane-Dick (2006) і Ntoumanis (2005) також підтверджують, що формувальне оцінювання пов'язане з підвищенням задоволення навчанням і зацікавленості учнів у фізичній активності [18; 19]. Andersson & Palm (2017) підкреслюють, що систематичне застосування ФО в школах сприяє підвищенню самостійності та відповідальності учнів за результати навчання [8].

Ключовий внесок цього дослідження полягає у продемонстрованій дії формувального оцінювання на внутрішню та соціальну мотивацію учнів. Це узгоджується з положеннями теорії самодетермінації R. Ryan і E. Deci, згідно з якою ефективна мотивація зростає в умовах задоволення базових психологічних потреб: автономії, компетентності та причетності [20]. Результати підвищення мотивації у шкалах «розвиток вмінь», «змагання/досягнення», «соціальна взаємодія» і «контроль ваги» підтверджують, що створення середовища підтримки та зворотного зв'язку формує сприятливі умови для зростання внутрішньої мотивації учнів до фізичної активності.

Ці результати також корелюють із дослідженнями В. Ghorbanzadeh [15], який продемонстрував вплив формувального оцінювання на зростання академічної мотивації в середній школі. Наявність достовірних змін у мотиваційних шкалах лише в експериментальній групі вказує на те, що традиційна система оцінювання не стимулює учнів до поглибленого залучення в освітній процес з фізичної культури.

Таким чином, результати нашого експерименту узгоджуються з міжнародними дослідженнями і підкреслюють універсальність формувального оцінювання як ефективного інструменту для підвищення мотивації та досягнень учнів у фізичному вихованні.

Водночас необхідно враховувати деякі обмеження дослідження. По-перше, кількісний склад вибірки був обмеженим, що ускладнює можливість узагальнення результатів на ширшу популяцію школярів. По-друге, для оцінки мотивації використовувався лише один психометричний інструмент (опитувальник PALMS), що хоча й валідний, але не дає повної картини складної багатовимірної природи мотивації. Доцільним є подальше залучення змішаних методів, зокрема напівструктурованих інтерв'ю та якісного контентаналізу зворотного зв'язку від учнів та вчителів.

Отже, отримані результати не лише підтверджують ефективність формувального оцінювання як засобу впливу на мотивацію до занять фізичною культурою, але й відкривають перспективи його ширшого застосування в освітній практиці. Подальші дослідження можуть бути спрямовані на вивчення впливу окремих компонентів формувального оцінювання (рефлексивного зворотного зв'язку, цифрових інструментів тощо) на різні види мотивації в умовах сучасної української школи-

Висновки

У результаті проведеного педагогічного експерименту встановлено, що впровадження формувального оцінювання суттєво підвищує рівень мотивації учнів до занять фізичною культурою. Статистично достовірні зміни (р < 0,05) виявлені за шкалами «розвиток умінь», «змагання/досягнення», «зовнішні заохочення», «соціальна взаємодія» та «контроль ваги», що підтверджує ефективність використаних педагогічних прийомів. Особливо виражені позитивні результати спостерігалися серед дівчаток, які продемонстрували зростання мотивації за шкалами «розвиток навичок» та «контроль ваги».

Порівняння з контрольною групою показало, що традиційні методи оцінювання не призвели до суттєвих змін у рівні мотивації, що свідчить про обмеженість їхнього впливу. Отже, формувальне оцінювання можна розглядати як ефективний інструмент активізації внутрішньої мотивації учнів, підвищення їхньої зацікавленості у процесі навчання та формування позитивного ставлення до фізичної культури.

Практична значущість дослідження полягає в тому, що запропонована модель формувального оцінювання може бути впроваджена в освітній процес загальноосвітніх закладів, забезпечуючи підвищення навчальної мотивації, розвиток навичок саморефлексії та зростання фізичної активності школярів.

В перспективі подальших досліджень впливу формувального оцінювання на мотивацію учнів до фізичної активності необхідно перевірити ефективність застосування різних підходів в навчальному процесі школярів інших вікових груп.

Конфлікт інтересів. Автори заявляють про відсутність конфлікту інтересів.

Джерела та література

- Вільям Д. Оцінювання для навчання. Як зробити оцінювання справжнім інструментом навчання. Київ: Академія, 2021. 240 с.
- 2. Горбенко Л. В. Оцінювання результатів навчання з фізичної культури в контексті Нової української школи. *Педагогіка і психологія*. 2021, № 2. С. 79–85.
- Капралова С. В. Формувальне оцінювання на уроках фізичної культури як засіб підвищення мотивації до занять. Педагогічні науки: теорія, історія, інноваційні технології. 2021. № 7(111). С. 104–112.
- Полянський А., Цимбалюк Ж. Формувальне оцінювання у навчальному предметі «Фізична культура»: підходи та перспективи. Сучасні досягнення фізичного виховання : зб. матеріалів ІІІ Всеукр. наук.-практ. конф. з міжнар. участю (14 листопада 2024 р., Харків). Харків: ХНМУ. 2024. С. 83–85.
- 5. Полянський А., Цимбалюк Ж., Божко С. Формувальне оцінювання у навчальному предметі «Фізична культура»: сутність та особливості. Фізична культура і спорт. Виклики сучасності: зб. тез доп. IV Всеукр. наук.-практ. конф., 25 жовтня 2024 року, Харків. Харків: ХНПУ імені Г. С. Сковороди. 2024. С. 179—182.
- 6. Савчук С. В., Яковенко Н. Ф. Використання сучасних технологій оцінювання в освітньому процесі з фізичної культури. *Молодий вчений*. 2020. № 4(80). С. 210–214.
- 7. Юськів С.М. Особливості формування інтересу та мотивації до занять з фізичного виховання. *Філософські обрії сьогодення*: матеріали VI Міжнар. наук.-практ. конф. Херсон, ХДАУ, 2018. С. 136–141.
- 8. Andersson, C., & Palm, T. (2017). Characteristics of improved formative assessment practice. *Education Inquiry*, 8(2), 104–122. https://doi.org/10.1080/20004508.2016.1275185
- Black, P. (2000). Formative assessment and curriculum consequences.
 In D. Scott (Ed.), Curriculum and Assessment (pp. 7–24). Greenwood Publishing Group.

References

- William, D. (2021), Otsinyuvannya dlya navchannya. Yak zrobyty otsinyuvannya spravzhnim instrumentom navchannya [Assessment for learning. How to make assessment a real learning tool]. Kyiv. Akademiia. 240 p. [in Ukraine]
- Horbenko, L. V. (2021), "Otsinyuvannya rezul'tativ navchannya z fizychnoyi kul'tury v konteksti Novoyi ukrayins'koyi shkoly" [Assessment of physical education learning outcomes in the context of the New Ukrainian School]. Pedagogy and Psychology, 2, 79–85. [in Ukraine]
- Kapralova, S. V. (2021), "Formuval'ne otsinyuvannya na urokakh fizychnoyi kul'tury yak zasib pidvyshchennya motyvatsiyi do zanyat'" [Formative assessment in physical education classes as a means of increasing motivation for classes]. *Pedagogical Sciences: Theory, History, Innovative Technologies*, 7(111), 104–112.[in Ukraine]
- 4. Polianskyi, A., & Tsymbaliuk, Z. (2024), "Formuvalne otsiniuvannia u navchalnomu predmeti «Fizychna kultura»: pidkhody ta perspektyvy" [Formative assessment in the academic subject «Physical Education»: approaches and perspectives]. Modern achievements of physical education: a collection of materials of the III All-Ukrainian scientific and practical conference with international participation (November 14, 2024, Kharkiv). Kharkiv: KhNMU, 83–85. [in Ukraine]
- 5. Polianskyi, A., Tsymbaliuk, Zh., & Bozhko, S. (2024), "Formuvalne otsiniuvannia u navchalnomu predmeti «Fizychna kultura»: sutnist ta osoblyvosti" [Formative assessment in the academic subject "Physical Education": essence and features]. Physical culture and sport. Challenges of modernity: A collection of abstracts of the IV All-Ukrainian scientific and practical conference (October 25, 2024, Kharkiv). Kharkiv: KhNPU named after G.S. Skovoroda, 179–182. [in Ukraine]
- Savchuk, S. V., & Yakovenko, N. F. (2020), "Vykorystannya suchasnykh tekhnolohiy otsinyuvannya v osvitn'omu protsesi z fizychnoyi kul'tury" [The use of modern assessment technologies in the educational process of physical education]. A Young Scientist, 4(80), 210–214. [in Ukraine]

- Black, P., & Wiliam, D. (1998). Assessment and classroom learning.
 Assessment in Education: Principles, Policy & Practice, 5(1), 7–74.
 https://doi.org/10.1080/0969595980050102
- 11. Brookhart, S. M. (2010). Formative assessment strategies for every classroom: An ASCD action tool (2nd ed.). ASCD.
- 12. Carless, D. (2007). Learning-oriented assessment: Conceptual bases and practical implications. *Innovations in Education and Teaching International*, 44(1), 57–66. https://doi.org/10.1080/14703290601081332
- 13. Chng, L. S., & Lund, J. (2018). Assessment for learning in physical education: The what, why and how. *Journal of Physical Education, Recreation & Dance*, 89(8), 29–34.
- Effects of formative assessment on intrinsic motivation in primary school mathematics instruction. (2023). European Journal of Psychology of Education, 38(3), 673–692. https://doi.org/10.1007/ s10212-023-00768-4
- Ghorbanzadeh, B. (2011). Determination of Taekwondo national team selection criterions by measuring physical and physiological parameters. *Annals of Biological Research*, 2(6), 184–197.
- 16. Khursheed, M., Alwi, S., Riasat, A., & Malik, S. (2023). Evaluation of formative assessment strategies in enhancing student achievements and learning motivation in higher secondary schools. *Pakistan Journal* of Educational Research, 6(2), 77–92. https://pjer.org/index.php/ pjer/article/view/847
- 17. Mjatveit, A., & Giske, R. (2017). Learning climate in physical education: Analysis of preservice teachers' reflections about, and facilitation of, learning climate in their own teaching. *Journal of Physical Education and Sport*, 17(1), 224–232.
- 18. Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learning: A model and seven principles of good feedback practice. *Studies in Higher Education*, 31(2), 199–218. https://doi.org/10.1080/03075070600572090
- 19. Ntoumanis, N. (2005). A prospective study of participation in optional school physical education using a self-determination theory framework. *Journal of Educational Psychology*, 97(3), 444–453. https://doi.org/10.1037/0022-0663.97.3.444
- Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. *American Psychologist*, 55(1), 68–78. https://doi.org/10.1037/0003-066X.55.1.68
- 21. Shepard, L. A. (2000). The role of assessment in a learning culture. Educational Researcher, 29(7), 4–14. https://doi.org/10.3102/ 0013189X029007004
- 22. Shute, V. J. (2008). Focus on formative feedback. *Review of Educational Research*, 78(1), 153–189. https://doi.org/10.3102/0034654307313795
- 23. Silva, P. C. da C., Sicilia, Á., Burgueño, R., & Lirola, M. J. (2018). Academic motivation in the initial training of physical education teachers. Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte, 18(71), 537–554. https://doi.org/10.15366/ rimcafd2018.71.009
- 24. Slingerland, M., Weeldenburg, G., & Borghouts, L. (2024). Formative assessment in physical education: Teachers' experiences in an inservice professional development programme. *European Physical Education Review*, 30(3), 622–641. https://doi.org/10.1177/1356336X241237398
- Treschman, K., Stylianou, M., & Brooks, D. D. (2024). A scoping review of feedback in physical education. *European Physical Education Review*, 30(2), 459–479. https://doi.org/10.1177/1356336X241230829

- Yuskiv, S. M. (2018), "Osoblyvosti formuvannya interesu ta motyvatsiyi do zanyat' z fizychnoho vykhovannya" [Peculiarities of forming interest and motivation for physical education classes]. *Philosophical Horizons of Today*: materials of the VI International Scientific and Practical Conference, Kherson, KhDAU, 2018. Kherson, 136–141. [in Ukraine]
- Andersson, C., & Palm, T. (2017). Characteristics of improved formative assessment practice. *Education Inquiry*, 8(2), 104–122. https://doi.or g/10.1080/20004508.2016.1275185
- Black, P. (2000). Formative assessment and curriculum consequences.
 In D. Scott (Ed.), Curriculum and Assessment (7–24). Greenwood Publishing Group.
- 10. Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5(1), 7–74. https://doi.org/10.1080/0969595980050102
- 11. Brookhart, S. M. (2010). Formative assessment strategies for every classroom: An ASCD action tool (2nd ed.). ASCD.
- Carless, D. (2007). Learning-oriented assessment: Conceptual bases and practical implications. *Innovations in Education and Teaching International*, 44(1), 57–66. https://doi.org/10.1080/14703290601081332
- 13. Chng, L. S., & Lund, J. (2018), Assessment for learning in physical education: The what, why and how. *Journal of Physical Education, Recreation & Dance*, 89(8), 29–34.
- 14. Effects of formative assessment on intrinsic motivation in primary school mathematics instruction. (2023). European Journal of Psychology of Education, 38(3), 673–692. https://doi.org/10.1007/ s10212-023-00768-4
- Ghorbanzadeh, B. (2011). Determination of Taekwondo national team selection criterions by measuring physical and physiological parameters. *Annals of Biological Research*, 2(6), 184–197.
- 16. Khursheed, M., Alwi, S., Riasat, A., & Malik, S. (2023). Evaluation of formative assessment strategies in enhancing student achievements and learning motivation in higher secondary schools. *Pakistan Journal* of Educational Research, 6(2), 77–92. https://pjer.org/index.php/ pier/article/view/847
- 17. Mjatveit, A., & Giske, R. (2017). Learning climate in physical education: Analysis of preservice teachers' reflections about, and facilitation of, learning climate in their own teaching. *Journal of Physical Education* and Sport, 17(1), 224–232.
- Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learning: A model and seven principles of good feedback practice. *Studies in Higher Education*, 31(2), 199–218. https://doi.org/10.1080/03075070600572090
- Ntoumanis, N. (2005). A prospective study of participation in optional school physical education using a self-determination theory framework. *Journal of Educational Psychology*, 97(3), 444–453. https://doi.org/10.1037/0022-0663.97.3.444
- Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. *American Psychologist*, 55(1), 68–78. https://doi.org/10.1037/0003-066X.55.1.68
- 21. Shepard, L. A. (2000). The role of assessment in a learning culture. *Educational Researcher*, 29(7), 4–14. https://doi.org/10.3102/0013189X029007004
- Shute, V. J. (2008), Focus on formative feedback. Review of Educational Research, 78(1), 153–189. https://doi.org/10.3102/ 0034654307313795

- 26. Trigueros, R., Aguilar-Parra, J. M., López-Liria, R., et al. (2019). The dark side of the self-determination theory and its influence on the emotional and cognitive processes of students in physical education. *International Journal of Environmental Research and Public Health*, 16(22), 4444. https://doi.org/10.3390/ijerph16224444
- Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Harvard University Press. https://doi.org/10.2307/j.ctvjf9vz4
- 28. Wiliam, D. (2000). *An overview of the relationship between assessment and the curriculum*. In D. Scott (Ed.), Curriculum and Assessment (pp. 165–182). Greenwood Publishing Group.
- Wiliam, D., & Black, P. (2004). Working inside the black box: Assessment for learning in the classroom. *Phi Delta Kappan*, 86(1), 9–21.
- William, D. (2011). What is assessment for learning? Studies in Educational Evaluation, 37(1), 3–14. https://doi.org/10.1016/j. stueduc.2011.03.001
- 31. Zach, S., Bar-Eli, M., Morris, T., & Moore, M. (2012). Measuring motivation for physical activity: An exploratory study of PALMS – the physical activity and leisure motivation scale. *Athletic Insight*, 4. ISSN 1947-6299.

- 23. Silva, P. C. da C., Sicilia, Á., Burgueño, R., & Lirola, M. J. (2018). Academic motivation in the initial training of physical education teachers. Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte, 18(71), 537–554. https://doi.org/10.15366/ rimcafd2018.71.009
- 24. Slingerland, M., Weeldenburg, G., & Borghouts, L. (2024). Formative assessment in physical education: Teachers' experiences in an in-service professional development programme. *European Physical Education Review*, 30(3), 622–641. https://doi.org/10.1177/1356336X241237398
- 25. Treschman, K., Stylianou, M., & Brooks, D. D. (2024). A scoping review of feedback in physical education. *European Physical Education Review*, 30(2), 459–479. https://doi.org/10.1177/1356336X241230829
- 26. Trigueros, R., Aguilar-Parra, J. M., López-Liria, R., et al. (2019). The dark side of the self-determination theory and its influence on the emotional and cognitive processes of students in physical education. *International Journal of Environmental Research and Public Health*, 16(22), 4444. https://doi.org/10.3390/ijerph16224444
- Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Harvard University Press. https://doi.org/10.2307/j.ctvjf9vz4
- 28. Wiliam, D. (2000). *An overview of the relationship between assessment and the curriculum*. In D. Scott (Ed.), Curriculum and Assessment (165–182). Greenwood Publishing Group.
- Wiliam, D., & Black, P. (2004), Working inside the black box: Assessment for learning in the classroom. *Phi Delta Kappan*, 86(1), 9–21
- William, D. (2011). What is assessment for learning? Studies in Educational Evaluation, 37(1), 3–14. https://doi.org/10.1016/j. stueduc.2011.03.001
- Zach, S., Bar-Eli, M., Morris, T., & Moore, M. (2012). Measuring motivation for physical activity: An exploratory study of PALMS – the physical activity and leisure motivation scale. *Athletic Insight*, 4. ISSN 1947-6299.

Надійшла до друку 13.08.2025

НАШІ АВТОРИ

- **Квач Ольга** Магістр фізичного виховання, Київський університет імені Бориса Грінченка; Школа-Прескул, Оак Ріджський шкільний округ, Теннессі, США.
- **Самолюк Ольга** кандидат педагогічних наук, доцент, Придністровський державний університет ім. Т. Г. Шевченка, м. Тираспіль, Республіка Молдова.
- **Ши Лей** доктор наук, професор, директор центру великих даних спортивного моніторингу та директор відділу викладання й досліджень у сфері спортивної підготовки, Коледж змагальних видів спорту Шаньдунського спортивного університету, Китайська Народна Республіка.
- **Курівський Ярослав** здобувач 3-го рівня вищої освіти, 4-го року навчання, Кам'янець-Подільський національний університет імені Івана Огієнка, м. Кам'янець-Подільський, Україна.
- **Мацієвич Тимур** здобувач 3-го (доктор філософії) рівня вищої освіти, 3 рік навчання, Кам'янець-Подільський національний університет імені Івана Огієнка, м. Кам'янець-Подільський, Україна.
- **Клюс Олена** кандидат наук з фізичного виховання та спорту, доцент, старший викладач кафедри теорії і методики фізичного виховання, м. Кам'янець-Подільський, Україна.
- **Погорецька Ольга** викладач вищої категорії, ВСП Кам'янець-Подільський фаховий коледж НРЗВО «Кам'янець-Подільський, Україна.
- **Скавронський Олександр** кандидат наук з фізичного виховання та спорту, доцент, доцент кафедри теорії і методики фізичного виховання, Кам'янець-Подільський національний університет імені Івана Огієнка, м. Кам'янець-Подільський, Україна.
- **Цимбалюк Жанна** кандидат наук з фізичного виховання і спорту, доцент, доцент кафедри теорії, методики і практики фізичного виховання, Харківський національний педагогічний університет імені Г. С. Сковороди, м. Харків, Україна.
- Палевич Сергій доктор філософії (PhD (фізичне виховання та спорт)), доцент, начальник кафедри спеціальної фізичної та бойової підготовки Національної академії Служби безпеки України, м. Київ, Україна.
- **Кондратюк Володимир** викладач кафедри фізичного виховання, спеціальної фізичної підготовки і спорту Харківського національного університету Повітряних Сил імені Івана Кожедуба, м. Харків, Україна.
- **Кривенцова Ірина** кандидат педагогічних наук, доцент, завідувачка кафедри теорії, методики і практики фізичного виховання, Харківський національний педагогічний університет імені Г. С. Сковороди, м. Харків, Україна.
- **Клименченко Вікторія** старший викладач кафедри теорії, методики і практики фізичного виховання, Харківський національний педагогічний університет імені Г. С. Сковороди, м. Харків, Україна.

OUR AUTHORS

- **Kvach Olha** Master of Physical Education Borys Grinchenko Kyiv University; Preschool, Oak Ridge School District, Tennessee, USA; «Nika Rhythmic gymnastics LLC», USA.
- **Samoliuc Olga** Candidate of Pedagogical Sciences, Associate Professor at the Department of Sports Games, Pridnestrovian State University named after T. G. Shevchenko, Tiraspol, the Republic of Moldova.
- **Shi Lei** Doctoral degree, Professor (Level 4), Director of the Sports Monitoring Big Data Center、 Director of the Sports Training Teaching and Research Section, College of Competitive Sports, Shandong Sport University, China.
- **Kurivskyi Yaroslav** 3rd level seeker, 4 year of higher education, Kamyanets-Podilskyi Ivan Ogiienko National University, Kamyanets-Podilsky, Ukraine.
- **Matsiyevych Tymur** 3rd level seeker, 3 year of higher education, Kamyanets-Podilskyi Ivan Ogiienko National University, Kamyanets-Podilsky, Ukraine.
- Klius Olena Candidate of Science of Physical Education and Sport, Associate Professor, Senior Lecturer at the department of Theory and Methodology of Physical Education, Kamianets-Podilskyi Ivan Ohiienko National University, Kamianets-Podilskyi, Ukraine.
- **Skavronskyi Oleksandr** Candidate of Science of Physical Education and Sport, Associate Professor, Associate Professor at the department of Theory and Methodology of Physical Education,, Kamianets-Podilskyi Ivan Ohiienko National University, Kamianets-Podilskyi, Ukraine.
- **Pohoretska Olha** Senior Lecturer Educational and rehabilitation institution of higher education «Kamianets-Podilskyi state institute», Kamianets-Podilskyi, Ukraine.
- **Zhanna Tsymbalyuk** Candidate of Sciences in Physical Education and Sports, Associate Professor, Associate Professor of the Department of Theory, Methods and Practice of Physical Education, Kharkiv National Pedagogical University named after G.S. Skovoroda, Kharkiv, Ukraine.
- **Palevych Serhii** Doctor of Philosophy, Associate Professor, Head of the Department of Special Physical and Combat Training, National Academy of the Security Service of Ukraine, Kyiv, Ukraine.
- **Kondratyuk Volodymyr** lecturer at the Department of Physical Education, Special Physical Training and Sports, Ivan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine.
- Kryventsova Iryna Candidate of Pedagogical Sciences, Associate Professor, Head of the Department of Theory, Methods and Practice of Physical Education, Kharkiv National Pedagogical University named after G. S. Skovoroda, Kharkiv, Ukraine.
- **Klymenchenko Viktoriia** Senior Lecturer, Department of Theory, Methods and Practice of Physical Education, Kharkiv National Pedagogical University named after G. S. Skovoroda, Kharkiv, Ukraine.

Наукове видання

ВІСНИК

Кам'янець-Подільського національного університету імені Івана Огієнка

ФІЗИЧНЕ ВИХОВАННЯ, СПОРТ І ЗДОРОВ'Я ЛЮДИНИ

Збірник наукових праць Випуск **30, № 3 (2025)**

Редакційна колегія залишає за собою право відхиляти матеріали, що не відповідають вимогам до фахових видань або вносити корективи

За зміст і достовірність інформації відповідальність несуть автор та співавтори

Формат 60×84/8. Ум. друк. арк. 6,05. Тираж 300 пр. Зам. № 577.

Підписано до друку 26.09.2025

Видання та друк ФОП Панькова А. С., вул. Симона Петлюри, 306, м. Кам'янець-Подільський, Хмельницька обл., 32302 Тел. +380 (67) 381 29 43 E-mail: aksiomaprint@ukr.net

> Свідоцтво суб'єкта видавничої справи ДК № 6561 від 28.12.2018